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We review the recent progress in understanding the Mott transition in
disordered systems using the mean-field approach to the strong correlation
problem. It is based on a new functional integral formulation of the dis-
ordered interacting electron problem. The saddle-point solution recovers a
mean-field theory of the strong correlation problem, and becomes exact in the
limit of large spatial coordination. We compare the results of the mean-field
theory with experimental findings and indicate directions for future work.
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1. Introduction 	
The Mott transition, that is the metal—insulator transition induced by the

electron—electron interactions in a periodic system, has been investigated theoreti-
cally and experimentally for many years [1]. Experimentally, it seems to be realized
in three-dimensional transition metal oxides such as V203 [2] and can be driven
by varying pressure, temperature, and composition.

From a theoretical point of view, several ideas have been put forward as a
pictures of the Mott transition. In early work, Hubbard introduced the notion of
Hubbard bands [3], which are electronic bands describing propagating empty and
doubly occupied sites. For large U these bands split, leading to an insulating state.
As U is reduced, there is a critical value of U where the two bands merge, and
the system becomes metallic. This is the Hubbard picture of the metal-insulator
transition. An alternative picture was provided by Brinkman and Rice [4], build-
ing on the work of Gutzwiller. These authors started from the metallic phase,
which they described as a strongly renormalized Fermi liquid with a characteristic
Fermi energy scale εF*, gradually collapsing as the transition is approached. The
metal—insulator transition in this view is driven by the disappearance of the Fermi
liquid quasiparticles. Another scenario was proposed by Slater [5], who pointed
out that the metal—insulator transition is often accompanied by long range an-
tiferromagnetic order, and viewed the doubling of the unit cell which makes the
band structure of the system that of a band—insulator, as the driving force behind
the metal—insulator transition.

The nature of the Mott transition in periodic solids has been recently clarified
by the solution of a mean-field theory which becomes exact in the limit of large spa-
tial coordination [6]. The approach is based on a mapping of the models of strongly
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correlated electrons onto impurity models supplemented by a self-consistent condi-
tion [7]. This approach provided a synthesis of the Mott Hubbard Brinkman Rice
and Slater pictures, and many predictions of the approach agree qualitatively and
even quantitatively with experimental results in various transition metal oxides.

A second possible experimental realization of the Mott transition is provided
by phosphorus doped silicon (Si:P) and other uncompensated doped semiconduc-
tors [11]. Here the metal—insulator transition can be driven by changing the doping
or by applying a magnetic field. Randomness introduces a new important variable
in this problem, raising various new questions. One can ask how disorder modifies
various regimes of a strongly correlated metal, or more specifically, how weak dis-
order affects a strongly correlated metal and a Mott insulating phase. In addition,
even for weak or zero interactions, disorder alone can give rise to a metal—insulator
transition (Anderson transition), and to an Anderson insulating phase [12].

Most of the theoretical work on the metal—insulator transition induced by
disorder and interaction begins with the Anderson transition of the non-interacting
system and adds the interactions perturbatively. The perturbation theory is then
controlled by a renormalization group near two dimensions, an approach which
was pioneered by Finkelshtein [13]. This approach, based on Fermi liquid ideas,
has provided a consistent framework for understanding the metal—insulator tran-
sition in systems where spin is not conserved. In systems where spin is conserved,
this approach suggests that at long scales the interactions are strong while the dis-
order is weak [8] but the formalism breaks down at that point and no consistent
interpretation exists.

This situation has motivated us to extend the mean-field approach to the
disordered interacting systems [9, 10, 14]. We approach the metal—insulator tran-
sition from the limit of large dimensionality (as opposed to the epsilon expansion
around two dimensions). In this limit; the physics is dominated by the strong in-
teractions in a disorder medium rather than by Anderson localization. We regard
the metal—insulator transition in. uncompensated doped semiconductors as a gen-
uine Mott transition and explore the consequences of this view using a recently
developed mean-field theory of strongly correlated electron systems. The absence
of long range magnetic ordering in Si:P and many other experiments suggest that
this system displays a genuine Mott transition, making an interesting system to
study the metal—insulator transition.

In this paper, we will review the main insights obtained with this approach.
We stress a technical advantage of dealing with a spatially disordered situation,
the possibility of carrying out a controlled loop expansion. We compare our results
with the experimental situation in doped semiconductors and indicate directions
for future work.

2. Model of disorder

We consider the following disordered Hubbard model Hamiltonian:

For simplicity, we restrict our attention to the class of models that can be
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formulated on an arbitrary lattice, but correspond to a special form of disorder.
In this class, the random hopping elements are assumed to take the form

and in addition, there can be an arbitrary distribution of site energies ε i . Here,
yij-s are independent bond variables with a symmetric distribution, i.e. y ?m+l = 0,
and g(xi, xj) is an arbitrary function of local site variables xi.

The special class of models which have a symmetric distribution of hopping
elements has a very simple physical interpretation. As first observed by Weg-
ner [15], in these "gauge invariant" models, the phases of the electrons undergo
random shifts at every lattice hop and so the mean free path 2 reduces to one
lattice spacing. On general grounds, on length scales longer than Ι  the details of
the lattice structure are washed out by disorder, so that for gauge invariant mod-
els in the large dimensionality limit, the details of the lattice structure become
irrelevant. We contrast this with the models with arbitrary disorder, discussed in
Sec. 3.2, which have a well-defined pure limit, and accordingly can also have an
arbitrarily large mean free path. The presence of this intermediate lengthscale (ι
can be much larger than the lattice spacing a, but much smaller than the localiza-
tion length ξ) is often irrelevant to both the long wavelength phenomena such as
localization, and local phenomena such as the Mott transition. The gauge invari-
ant models avoid these unnecessary complications, without disrupting any of the
qualitative properties on either very short, or very long lengthscales.

We will restrict our attention to the situation where g(xi, xj) = xixj, with
an arbitrary distribution Px(xi) for the site variables xi. For a trivial choice of
Px(xi) = δ(xi-1), the models reduce to the gauge invariant models of Wegner [15].
Nontrivial distributions Px(xi) which extend to small values of the variable xi are
useful for the study of disorder-induced local moment formation. Those sites with
xi small represent the sites with weak hybridization. At intermediate correlation,
we expect the sites with xi small to behave as local moments and give large
contributions to the thermodynamic quantities such as the specific heat coefficient

γ =C/T,while other sites remain in the itinerant regime.
Also, we take yij-s to be Gaussian random variables with zero mean, and

with the variance

Here, the (uniform) matrix fib specifies the lattice structure

and we have scaled the (square of the) hopping elements by the coordination
number z = Σj  fib, in order to obtain a finite result in the z -> oo limit.

In the d = oo limit, all local correlation functions can be evaluated with
respect to a local effective Action of the form
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Here, the Fermi fields ci,σ(τ) represent electrons of spin σ on site i, μ is the
chemical potential, and is the inverse temperature. The "Weiss field" Wi,σ(τ, τ ')
is obtained by integrating out formally all the degrees of freedom on other sites in
the lattice, in the large d limit. The self-consistency condition determining Wi,σ is

where Gj,σ(ωn) = (cj, σ(ωn)cj,σ(ωn)) are local Green's functions evaluated with
respect to the effective action of Eq. (2).

The present equations are exact at z —> oo for an arbitrary lattice, due to
the presence of the "gauge invariant" form of the hopping disorder. We mention
that the same equations are also exact on a z = oo Bethe lattice with an arbitrary
form of disorder.

It is worth pointing out that there are two classes of lattices which can have
large coordinations:

(a) Lattices with short-range bonds but living in a space of large dimension-
ality. For example, on a hypercubic lattice with nearest neighbor hopping in d
dimensions, z = 2d.

(b) Lattices embedded in a finite dimensional space, but having long hopping
range. In this case, the lattice matrix fi; takes the form

and the coordination number z Ld.
We emphasize the fact that for gauge invariant models of disorder the equa-

tions are independent of the lattice structure. Since the equations determine the
local effective action, this means that all the local correlations functions will be
insensitive to the lattice structure, in this mean-field limit. However, other proper-
ties such as the tendency to the formation of the spin and charge density wave, are
very sensitive to the details of the lattice structure. In doped semiconductors [11],
disorder introduces large amounts of frustration, and magnetic ordering does not
occur, even though the system is strongly correlated, therefore we will concen-
trate on paramagnetic solutions of the mean-field equations which are realized on
frustrated lattices.

3. Thermodynamic and transport properties

Once local Green's functions are self-consistently determined, we can imme-
diately obtain all the thermodynamic properties from the calculation of the energy
E(T). Using standard methods [16], it is possible to express the energy in terms of
single-particle Green's functions. In the following, we will concentrate on gauge in-
variant models, for which the expression takes, are particularly simple: The energy
of the system takes the form

The expression is valid in the paramagnetic phase, where we have performed the
spin sum. It is important to note that the energy takes an additive form with
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respect to sites having energies εi and hopping parameters xi. Once the energy
is known as a function of temperature, we can calculate quantities such as the
specific heat, entropy, etc. We immediately conclude that the specific heat is also
additive, reminiscent to the phenomenological "two-fluid model" of doped semi-
conductors [11]; we will discuss the relevance of our results to such systems in more
details in Sec. 6.

The transport coefficients, like the conductivity can be obtained from Kubo
formulas which reduce to calculating appropriate electronic correlation functions.
In the case of the conductivity, the calculations are especially simple in the d = oo
limit, essentially due to the cancellation of the vertex corrections, as first pointed
out by Khurana [17]. For general models of disorder, it is then possible to ex-
press the conductivity in terms of the (averaged) local spectral functions — a
feature reminiscent of the coherent potential approximation (CPA). In fact, in
the non-interacting limit, our self-consistency conditions reduce to CPA, which is
consistent with the absence of Anderson localization in d = oo.

The considered class of gauge invariant models is characterized by hopping
elements with random signs, which corresponds to a mean free path of one lattice
spacing. The details of the lattice structure- become irrelevant, and the real part
of the conductivity assumes a simple form

As we can see from this expression, the conductivity is finite in the metallic region
(p2 (ω = 0, T) 0), in contrast to the case of pure lattices where the resistance
(inelastic scattering) vanishes at T —> 0. For gauge invariant models, the pure limit
cannot be obtained by tuning a parameter (disordered strength) since the mean
free path ι cannot exceed one lattice spacing (ι —> oo in the pure limit). However,
as we will see, these models with hopping randomness (in addition to possible site
randomness) display generic behavior at the metal—insulator transition, which
presumably is relevant for realistic systems.

4. Metal—insulator transitions

In general, when either sufficiently strong correlations or disorder is present,
metal to insulator transitions (MIT) can take place. In the d = oo framework, the
Anderson localization effects are absent, but MIT can still take place because of
strong correlation effects. In the following, we discuss the possible classes of MIT-s
present in d = oo models, and make predictions about the behavior of thermody-
namic and transport properties in the vicinity as the transition is approached.
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4.1. Hopping disorder

In a number of materials that display a metal—insulator transition such as
uncompensated doped semiconductors [11], the main source of disorder stems from
random position of dopant atoms, thus leading to strong hopping randomness. In
order to study such situations, we begin our analysis by examining the models
with pure hopping randomness.

As the first example, we consider the case of simple uncorrelated hopping
disorder, of the form taj = yii, with the yij Gaussian distributed random numbers
and the variance t 2 . In that case, the self-consistency conditions determining the
effective action are identical as for the pure Hubbard model on the d = oo Bethe
lattice; the solution of this model is well known [18]. At moderate correlation
strength, the system is metallic, and displays usual Fermi liquid behavior. At
T = 0, a Mott—Hubbard transition takes place at a critical interaction strength Uc ,
where the quasiparticle band vanishes and a gap for charged excitations appears,
leading to an insulating state. As the transition is approached, the effective mass,
and thus also the specific heat coefficient γ = C/T is found to diverge as γ~
(Uc — U) -1 .

While these properties are identical as in the pure model, the behavior of the
conductivity proves to be more sensitive to the presence of disorder. By using the
expressions for the conductivity of Sec. 3, and the well-known results for the local
spectral functions, we can readily compute the transport properties at arbitrary
temperature T and interaction strength U. At T = O the behavior of the DC
(ω = 0) conductivity is particularly simple, and can be computed analytically. In
this limit, Fermi liquid theorems for the Anderson model assert that in the metallic
phase, the imaginary part of the Anderson model self energy vanishes physically
this reflect absence of inelastic scattering at T = 0. When this result is applied
to the d = oo model, we conclude that at half-filling (at particle—hole symmetry),
the local spectral function p(ω = 0, T = 0) is pinned to its non-interacting value
po = (πt)-1. As a result the T = O value of the DC conductivity is also pinned, i.e.

σDC(T = 0) = σ0 = 4a2/π, (12)
throughout the metallic phase. Although the precise value of σ0 given here is ap-
propriate only for this particular model of hopping randomness, the proof for the
conductivity pinning can be easily generalized to more complicated situations.
In fact, pinning is obeyed at T = O for any model obeying (local) particle—hole
symmetry, i.e. models at half-filling with an arbitrary form of hopping random-
ness. Random site energies break local particle—hole symmetry, and thus violate
the pinning condition; in that case σDC(T = 0) can depend on U.

Thus, we have shown that for models with hopping randomness, the con-
ductivity at T = O remains constant inside the metallic phase, and than abruptly
jumps to zero as the system becomes a Mott insulator. The behavior can be de-
scribed as a manifestation of minimum metallic conductivity, in agreement with
early ideas of Mott [1].

At finite temperature, the pinning condition is violated due to inelastic scat-
tering, and we have to solve explicitly the self-consistency equations at T # O in
order to obtain results for the conductivity. Using methods of Ref. [10, 14], we have
carried out the appropriate calculations, and the results are presented in Fig. 1.
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Fig. 1. DC conductivity of the infinite dimensional Hubbard model with random hop-
ping at half-filling. σDC is plotted in units of σ0, the U = O value. The full line shows
the T = 0 behavior, displaying minimum metallic conductivity. At finite temperature
T = 0.05 > T* (in units of the half-bandwidth D = 2t), σDC continuously decreases as
the correlations grow, as shown by the dashed line.

The jump in the conductivity persists at small but finite temperatures T < T*,
which is of the order of one percent of the bandwidth. At higher temperatures,
the conductivity is a smooth function of U, and continuously drops to exponen-
tially small values as U is increased, reflecting the destruction of the coherent
quasiparticles by thermal inelastic scattering.

Before leaving the models with pure hopping disorder, we would like to com-
ment on possible modifications of the transition in presence of more complicated
models of random hopping. The generalizations, that we have in mind, correspond
to correlated hopping disorder, where in addition to random bond variables yij,
the hopping elements can take a more general form tij = yij xi xi , introduced in
Sec. 2. For these models, the behavior of the system proves to be very sensitive
to the detailed form of the probability distribution for random variables xi. If the
low-x tail of the distribution extends to very small values, local moment formation
occurs, and even the qualitative nature of the metallic phase can be modified; this
effect will be discussed in more detail in Sec. 5. On the other hand, it is the form of
the high-x tail that is the most relevant for the metal—insulator transitions. If this
tail extends to very high x values, it can suppress the Mott transition to arbitrarily
high values of Uc , since the band tails tend to close the Mott gap. The presence
of long but finite tails leads only to quantitative modifications; in the case of al-
gebraically long tails, the Mott (insulating) phase can be completely suppressed
in the strict d = oo limit. In that case the sharp transition turns into a smooth
crossover even at T = 0, and the system remains metallic at any U. It is worth not-
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ing that the last effect, the absence of an insulating phase for anomalously strong
hopping disorder, is an artifact of the d = oo limit. In finite dimensions, localiza-
tion and/or percolation effects are expected to restore the insulating behavior in
this anomalous limit.

4.2. Site disorder

In addition to hopping randomness, in realistic materials one also expects
some degree of site randomness, which can originate for example from the presence
of long-ranged electrostatic fields due to charged impurities (acceptors). As dis-
cussed above, random site energies locally break particle—hole symmetry, even if
the system is on the average at half-filling. One can thus suspect that the presence
of site randomness might lead to a qualitatively different scenario, and bring into
question the relevance of our result derived for models with pure hopping random-
ness. Motivated by these considerations, we now turn our attention to models with
pure site randomness, and investigate the possible metal—insulator transitions in
this case.

For simplicity, we consider a simple binary model of site randomness, where

so that the random site energies take values ε i= ±(1/2)W, and W measures the
strength of disorder. In contrast to the model with uncorrelated random hopping
where the disorder strength also defined the average bandwidth, this model has two
independent (dimensionless) energy scales: W/t and U/t (t is the hopping element).
For simplicity, we consider a semicircular density of states, which corresponds to
the Bethe lattice in d = oo.

We limit our attention to the limit of weak site disorder, and investigate the
resulting behavior near the Mott transition. If we fix the disorder W and increase
the interactions U, the system undergoes the Mott transition. From the point of
view of the spectral functions, this transition takes place in a fashion similar as
found for hopping disorder: the coherent quasiparticle band narrows down, and
eventually collapses at Uc , opening the Mott gap, corresponding to freezing one
electron per site. The presence of disorder W tends to broaden the bands, and thus
opposes Mott freezing, so that UU (W) is pushed to higher values as W increases.

A closer look at this transition reveals subtle differences from the hopping
disorder scenario. In particular, near the Mott transition, the low energy proper-
ties (conductivity, specific heat) are determined by the structure of the coherent
quasiparticle band. In the present case, the quasiparticles can be characterized
by two energy, scales: the renormalized disorder strength W and the renormalized
bandwidth D (at U = O and W = O the bare bandwidth is D = 4t). Our re-
sults show that both quantities vanish at the transition. However, we found that
D ~ (Uc - U) (as usual) while W~(Uc— U)2, so that the renormalized disorder
scales to zero much faster than the renormalized bandwidth.

This phenomenon, which can be qualified as the perfect screening of the
disorder by the interactions in the vicinity of the Mott transition, has important
consequences for transport properties. In particular, in this limit, the scattering
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time (coming from pure site disorder) behaves as

as the transition is approached at which point it suddenly jumps to zero, due to
the opening of the gap. Here, we have used the fact that for models with pure
site disorder which are not gauge invariant, the conductivity at weak disorder
can be expressed (in d = oo) by a Drude formula, in terms of the scattering
time [9]. At finite temperatures, not surprisingly, this divergence is cut off due to
inelastic scattering, but at relatively low temperatures large enhancement of the
conductivity still persists.

In contrast to transport properties, the thermodynamic response of the sys-
tem is qualitatively the same as in the case of hopping randomness, and the specific
heat coefficient (measuring the effective mass) again diverges linearly as a function
of the distance from the transition.

In the above analysis, we have examined a simple model of binary site ran-
domness. However, for more general models our conclusions about the interplay
of site randomness and correlations remain valid. In particular, the existence of
interaction screening of disorder persists, and the conductivity again diverges at
the Mott transition. We also mention that similarly as in the case of hopping ran-
domness, the presence of distributions of disorder with extremely long tails again
leads to the suppression of the Mott insulating phase. As for hopping randomness,
this effect is an artifact of the d = oo limit.

4.3. Combined hopping and site randomness

While we examined only the limits of pure hopping or pure site randomness
so far, in most realistic systems both types will be simultaneously present. To
examine this "generic" situation, we turn our attention to a model having both
hopping and site randomness. For simplicity, we consider the model of hopping
randomness with uncorrelated bond elements (gauge invariant models); in this
case the self-consistency conditions for the local spectral functions are identical as
in the case of pure site randomness on the Bethe lattice, the model that we have
examined in the previous section. As a consequence, not only the local spectral
functions, but also the thermodynamic behavior will be the same as discussed
above.

However, the behavior of the transport properties is quite different than for
pure site randomness. To see this, we recall that for the considered models of hop-
ping randomness in addition to site randomness, the conductivity takes quite a
different form than for pure site randomness. In the present case, the conductivity
is expressed in terms of local spectral functions, as given in Eq. (9). As a conse-
quence, even though the site randomness is perfectly screened by the interactions
as the Mott transition is approached, the elastic scattering coming from hopping



30 V. Dobrosavljević, G. Kotliar

randomness persists, and the conductivity remains finite. More precisely, σDC ap-
proaches the value it would take in the absence of site randomness, just before the
system undergoes the Mott transition and becomes insulating.

We thus conclude that the minimum metallic conductivity, i.e. the abrupt
jump of the conductivity at the Mott transition is generic, and so is expected to be
of relevance to experimental systems. The behavior of the models with pure site
models is special, although the physics associated with the interaction screening of
site randomness might be of quantitative importance even in realistic scenarios.

5. Disordered metallic phases: the local moment formation

Most metallic systems, both in the pure limit, and in presence of small
amounts of disorder can be understood by using Fermi liquid concepts. In such sit-
uations, the excitations of the electronic system can be described as a set of weakly
interacting quasiparticles, leading to universal properties at low temperatures. Of
course, this simplified description is valid only at temperatures T < Tcoh, where
the "coherence" temperature Tcoh represents the energy scale associated with co-
herent quasiparticles, which measures the relative strength of the correlations in
the system.

In a disordered system, the parameter that measures the relative interaction
strength u = U/t, where U is the on-site (Hubbard) interaction, and t the hopping
element (t ~ bandwidth) is also a random function of position. Those sites which
are weakly hybridized with the rest of the system (t small) will be in the strong
correlation regime (u large), where local charge fluctuations can be ignored, and
local moment formation occurs even if the system is not very close to the Mott
transition. For a broad distribution of hoppings, only few of the sites are expected
to correspond to u » 1, and thus represent well formed local moments. Instead,
most of the sites will be in the intermediate regime u 0(1), where the charge
fluctuations cannot be ignored, and the coupling of the local moments to conduc-
tion electrons is appreciable. We expect a broad distribution of these "Kondo"
couplings, leading to an even broader distribution of the corresponding "Kondo
temperatures" which represent characteristic energy scales at which local Fermi
liquid behavior sets in.

If the resulting distribution of the local Kondo temperatures Tk is sufficiently
broad and extends all the way to Tk = 0, one can expect the behavior of the sys-
tem to be qualitatively changed, and the Fermi liquid regime is not restored at any
T= 0. This kind ofnon-Fermi liquidbehavior [19, 20], characterized for example
by a diverging specific heat coefficient γ  = C/T at T-> 0, is indeed observed in a
number of materials containing strong hopping disorder, such as doped semicon-
ductors. The presence of this "disorder-induced local moment formation" is also
expected to play a crucial role in determining the transport properties near the
metal—insulator transition.

Disorder-induced local moment formation in a Hubbard model with ran-
dom hopping was recently investigated in a Hartree—Fock framework [21]. This
approach does indicate the presence of instabilities to local moment formation,
but it does not address the nature of local moments, or their interaction with
the conduction electrons needed to determine the nature of the ground state. In
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contrast, the present approach based on the d = oo formulation offers a natural
language for the problems involving the interplay of local disorder fluctuations
and the strong correlation effects. Furthermore, our approach is not limited to a
particular temperature interval and thus can be used to obtained results in the
entire temperature range.

In order to study the physics of the disordered metallic phase, and the asso-
ciated disorder-induced local moment formation, it is useful to consider models of
correlated hopping randomness of the form tij = yijxixj introduced in Sec. 2. In
realistic systems such as doped semiconductors [11], there are large fluctuations
in the local hybridization of a given site with its environment originating from
randomness in the position of dopant atoms. To represent such systems in our
d = oo framework, it is useful to consider models with broad distributions of local
hopping parameters xi.

In general, in the case of bounded distributions of hopping elements xi, al-
though the local moment formation does occur, the Fermi liquid behavior is re-
stored below a certain low temperature Tk(min).  On the other hand, if the distri-
bution PX(xi) extends all the way to xi = 0, the behavior of the thermodynamic
and transport properties will display non-Fermi liquid aspects even at arbitrarily
low temperatures. We will discuss the asymptotic low temperature behavior that
can be determined analytically for an arbitrary form of PX(xi).

5.1. Specific heat

We begin with the analysis of the low temperature form of the specific heat
in the present case. To obtain the leading temperature dependence as T —> 0, we
can use arguments similar to those used by Bhatt and Fisher [19], and Dobrosavl-
jević et al. [20] in the previous work. As we have seen in Sec. 3, the energy of the
system takes an additive form with respect to contributions coming from differ-
ent sites. Those sites that have their respective Kondo temperatures Tk(i) lower
than the temperature of the system T, will provide the dominant contributions
to the specific heat. To leading order, we can ignore the temperature as well as
the frequency dependence of the Weiss field Wi(ωn). In that case, the contribution
coming from a given site is just that of an Anderson model with hybridization

Δ(i)= xi Δ0, where Δ0 is the energy scale corresponding to thetypicalhybridiza-
tion in the system. Since the sites in question, having very weak hybridization, act
as local moments in the Kondo regime, the corresponding Kondo temperature is
given by [19, 20]

where Do is an energy of the order of the typical bandwidth in the system.
The contribution of a given site to y is then approximately given by

Collecting the contributions from all the sites with Tk(xi) < T, we find that to
leading order
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Here, the number (fraction) of "free spins"

Using these expressions, it is not difficult to see that for any distribution
PH(xi) which extends all the way to xi = 0, and having a low xi tail longer than
exponential (e.g. power law or lognormal), the resulting γ(T) diverges as T --> 0.
The precise form of this singularity depends on the details of PH(xi). However,
for any power law or even lognormal form of the low xi tail, the quantity nfr (T)
decreases to zero as T --f O slower than any power [20], giving an anomalously
slow decrease in the number of "free" spins with temperature, and a large anomaly
in γ(T).

The above arguments rigorously shows that for a large class of models with
continuous distributions of hopping our d = oo equations admit non-Fermi liquid
metallic solutions.

5.2. Conductivity

As we have seen in the Sec. 3, the "pinning condition", which is valid for
any model of hopping randomness guarantees that at particle—hole symmetry
(half-filling) the T = O value of the conductivity in the metallic phase remains
unaffected by the interactions, and thus by the associated disorder-induced local
moment formation. However, the presence of local moments does induce anoma-
lous low-temperature corrections to σDC which could be crucial in understanding
the transport properties in systems such as doped semiconductors.

To determine the leading temperature corrections to σDC, we proceed in a
similar fashion as in the discussion of the specific heat. In Sec. 3, we have seen
that for the models under consideration, the conductivity is expressed through an
averaged spectral function pw(ωn) that can be written as

In this expression, pi(ωn ) is the local spectral function (of the Anderson model)
corresponding to a given site i, and we have assumed hopping disorder only. In
the strongly correlated regime, pi(ωn) has a sharp (Kondo) peak near the Fermi
surface, describing the coherent quasiparticles. As the temperature is increased
from zero, inelastic scattering will destroy the existence of this coherent peak
at a characteristic temperature Tk. However, in a random system, this process
takes place locally, and a given site becomes "incoherent" at T ~ Tk(xi), when
this Kondo resonance is washed out. Thus, in contrast to thermodynamic re-
sponse, appreciable contributions to the conductivity come from those sites with
Tk (xi) > T, which remain coherent. More precisely,
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Again, to leading order we can ignore the frequency dependence of pi (con ), and we
find (at ωn —> 0).

By using this result, and Eq. (11), we find that the leading low temperature cor-
rection to the DC conductivity assumes the form

It is interesting to note that, although nfr (T) vanishes slower than any power
as T 	0, for realistic distributions one can write

where α(T) only very weakly, typically logarithmically [20], depends on tempera-
ture. Experimentally, one expects to measure some effective exponent a. As a —f O
at T —> 0, one expects these effective exponents to be small. This behavior is to be
contrasted with the fact that similar, nonanalytic finite temperature corrections to
the conductivity of dirty metals follow from weak localization and interaction [12]
effects. Our results thus suggest that such temperature dependence, could have
an entirely different origin — due to disorder-induced local moment formation in
a strongly correlated metal. Of course, a full theory should include both the local
moments and the mentioned hydrodynamic (diffusion) corrections. In the frame-
work of our approach these additional terms would appear at the level of one-loop
corrections to the d = oo (mean-field) expressions.

6. Functional integral formulation and loop expansion

The functional integral representation of the (replicated) partition function
of the model can be written as

Here, c" i and c" i are the electronic (Grassmann) fields with spin s =|, |, replica
index α = 1, ..., n, at lattice site i, and f3 is the inverse temperature. The random
site energies i are described by their probability distribution Psεi, and the random
hopping elements tij by the corresponding distribution PHtij.
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At this point, it is convenient to perform explicitly the averaging over the
Gaussian random (bond) variables yij, after which the hopping part of the action
takes the form

As we can see from this expression, the averaging over disorder has generated a
quartic term in the action, that is nonlocal in (imaginary) time, spin and replica
indices. We are now in a position to introduce a collective Q-fields of the form (in
terms of Matsubara frequencies ω = 2nπT; the indices "" are omitted for brevity)

by decoupling the (quartic) hopping term using a Hubbard—Stratonovich transfor-
mation. For simplicity, as before, we will ignore the superconducting phases, as well
as the fluctuations in the particle—particle (Cooper) channel, so that the Q-field
does not have anomalous components. The procedure can be straightforwardly
generalized to include the omitted terms.

It is now possible to integrate out formally the electron (Grassmann) fields,
and the resulting action for the Q-fields can be written as

The nonlocal part of the action Sh opQ takes a simple quadratic form in terms of
the Q fields

where, Kij = (1/z) fad 1 is the inverse lattice matrix, scaled by a coordination
number z. In contrast, all the nonlinearities are contained in the local part of the
action

where the effective action. for on-site electrons takes the form

The local effective action Seffći, ci , Qi, xi, εi is identical to the action of a (gen-
eralized) Anderson impurity model embedded in a electronic bath characterized
by a hybridization function x2t2Qw1w2s1s2(i). We can thus interpret our system
as a collection of Anderson impurity models that are "connected" through the
existence of a collective Q-fields. Here we note that, in contrast to an ordinary An-
derson model, the hybridization function is now non-diagonal in frequency, spin
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and replica indices. Physically, this reflects the fact that in general dimensions a
given site can be regarded as an Anderson impurity model in a fluctuating bath,
which breaks local translational invariance in time, space and spin.

When z —> oo, the functional integral over Q-fields, representing the partition
function, can be evaluated (exactly) by a saddle-point method, and we obtain a
mean-field theory. In order to derive the mean-field equations in our case, we look
for extrema of the action SQ with respect to the variations of the Q-fields, i.e.

we obtain the mean-field equations presented in Sec. 2.
The present approach is particularly convenient for the study of the effects

of strong correlations on disorder-driven transitions, and the interplay of Anderson
localization and strong correlations in general. This is especially true, since An-
derson localization is not present in d = oo (or infinite range) models, and so one
has to extend the approach to include the presence of spatial fluctuations missing
from the mean-field description. In order to study systematically the fluctuation
effects, we proceed to carry out an expansion in terms of the deviations of the col-
lective Q-fields from their saddle-point value, i.e. in powers of δQ(i) = Q(i) —QSP .

This procedure, also known as a loop expansion has been used in other disordered
problems, such as spin-glasses, to generate systematic corrections to the mean-field
theory. The method is particularly convenient when applied to long-range models
(class (b) above), since in that case the loop corrections are ordered by a small
parameter 1/z. The loop expansion can be applied also to large dimensionality
models (class (a) above), but in that case a given order in a loop expansion can be
considered to be an infinite resummation of the simple 1/d expansion, since each
term contains all powers of 1/d.

When the expansion of the effective action in terms of 6Q is carried to
the lowest, quadratic order, we obtain a theory describing Gaussian fluctuations
around the saddle point, that represent weakly interacting collective modes. Higher
order terms in the expansion then generate effective interactions of these modes,
which under appropriate conditions can lead to fluctuation-driven phase transi-
tions.

The Gaussian fluctuations of the Q-fields, will allow us to compute the lead-
ing corrections to the mean-field theory. They have the form
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This expression is appropriate for the long ranged model (b) above, in which case
the inverse lattice matrix in momentum space takes the form K(k) 1+ L 2 k2 ,
and we cut off the momentum integrals at . Λ=2π/L .  Note that the coefficient of
k2 , which can be interpreted as stiffness of the 6Q modes, is ~ L2 , so we see that
indeed the fluctuations are suppressed at 1 oo. In the above formula, the index
lm is used to represent the frequency, spin and replica indices. The local vertex
function Γ(l1 • • .14) is given by

At this level, the dynamics of the collective fluctuations 6Q is governed by the
form of S(2)δQ, which is expressed in terms of the local correlation functions of
the saddle-point theory, i.e. of the d= oo disordered Hubbard model. Accordingly,
a detailed study of the d = oo limit does not provide only a mean-field description
of the problem, but also determines the form of the leading corrections resulting
from fluctuations.

7. Comparison with experiments

After three decades of intensive investigations, there are various constraints
on a theoretical model which purports to explain the physics of uncompensated
doped semiconductors. In the following, we list these constraints and comment
how our perspective fares vis a vis the experiments.

(1) At the accessible temperatures, the thermodynamic quantities x and y
vary smoothly [11] as a function of concentration across the transition, and are
increasing functions of the inverse temperature even throughout the metallic phase.

(2) The thermodynamic behavior should be contrasted with the measure-
ments of charge transport, which vary much more rapidly near the transition. The
T = O extrapolated value [11] of the conductivity vanishes with an exponent p
which is thought to be close to 1/2. However, no dynamical scaling range in tem-
perature and concentration has been observed, making the determination of the
exponents ambiguous. In particular, values of the conductivity exponent ranging
from p = 0 [23] to p =1 [22] have been obtained on the basis of the same data.

(3) The NMR experiments [24] portray a strongly inhomogeneous picture.
The Knight shift on phosphorus is much larger than that on Si. Furthermore,
the 1/T1T on Si is the temperature dependence of x2* . This can be understood
naturally if the magnetic susceptibility has a weak momentum dependence.

(4) Finkelshtein has emphasized [25] that the ESR line width [26] ΔH1/2 is
proportional to x. Since ΔH1/2 is proportional to Σq x (q), this indicates that the
divergent part of the susceptibility is roughly q independent.

(5) Small amount of compensation or the external magnetic field are very
relevant perturbations [11] that dramatically alter the critical behavior of the
conductivity.

*This observation is due to A. Georges.
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(6) Spin-orbit scattering however is an irrelevant perturbation [27] since Si:B
(where spin-orbit scattering is dominant) shows similar behavior as Si:P.

The approach presented in this paper, on the most qualitative level, is con-
sistent with all these observations on the metallic side.

The collection of Anderson impurity models as a mean-field theory of the dis-
ordered Hubbard model provides a microscopic realization of the two-fluid model
which phenomenologically explains (1).

Underlying this picture there is a broad distribution of energy scales which
makes the Mott transition in dirty systems very different than in the pure case. The
conductivity goes discontinuously to zero at T = 0, but at any finite temperature
is a rapidly varying continuous function. This observation may account for the lack
of scaling, but here the loop corrections to the mean-field theory might modify the
effective exponents.

The local inhomogeneity of the system described in (3) is naturally captured
in our formulation. The weakly coupled sites can be thought of as the P donors
where the wave function of the delocalized electrons are concentrated.

The q independence of the thermodynamic response discussed in (4) is di-
rectly built in our formulation at the mean-field level. The loop expansion correc-
tions will bring possible departures from this behavior.

In our model, the relevant perturbations are those that cause departures
from particle-hole symmetry. Our approach thus justifies the fact that the uncom-
pensated doped semiconductors represent a unique universality class.

8. Conclusions

We have presented some new results of a nonperturbative approach to strongly
correlated disordered electrons. Even at the mean-field level, our results agree with
most of the surprising features found in doped semiconductors. Furthermore, our
approach allows systematic corrections to be obtained beyond the mean-field the-
ory. In this way, it will be possible to incorporate the effects of long-wavelength
(hydrodynamic) fluctuations responsible for the weak-localization and interaction
corrections and to make contact with the existing scaling theories of localization.
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