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On the basis of the deformable body model and the Morse potential
approximation a six-parametric spectral expansion of the rovibrational en-
ergy of diatomic molecules, competitive to the standard Dunham approach,
is proposed. The considered formula takes into account the centrifugal dis-
tortion effect and anharmonic corrections, which permit investigation of the
molecular spectra over a wide range of rotational and vibrational states.

PACS numbers: 33.10.Cs, 33.10.Jz

1. Introduction

A simple analysis of rovibrational spectra of diatomic molecules is based on

the Schrodinger equation
2 92 2

- ae o+ D 0 - B st =0, ©
in which r denotes the internuclear separation, m is the reduced mass of a diatomic
system and U(r) is the internuclear potential containing a set of parameters to be
obtained by a fit to the experimental energy levels or, if available, by a fit to a
theoretically calculated potential. One of the methods permitting determination
of the energy eigenvalues E,; for Eq. (1) is the Dunham approach [1] in which the
potential is assumed to be a power series of the instantaneous reduced displacement
from the equilibrium z = (r — rg)/ro

U(r) = apz? (1 + E a,,:c") . | (2)
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Application of the WKB method to Eq. (1) including potential (2) leads directly
to the eigenvalues taking the form of the series of vibration and rotation quantum
numbers

By =) Yim(v+1/2)J™(J + )™, (3)

Im

where Yi,, are given as functions of the potential parameters {a,} and the equi-
librium distance ro. The Dunham expansion has been tested on many molecules
providing quite satisfactory relationships between theoretical and experimental
values of rovibrational energy [2], and giving useful information on internal mo-
tion potential [3, 4]. However, this method has three main disadvantages, namely:

(i) The Dunham function (2) including the potential parameters {a,} obtained
by the fit to experimental data, frequently differs from RKR curves which
are commonly regarded as frue molecular potential curves.

(i1) The Dunham expansion (3) has a poor convergence, and sometimes it is
necessary to use up to a dozen parameters {a, } to obtain a good reproduction
of the transitions observed.

(iii) The Dunham approach cannot provide any information about the wave func-
tions of individual states of a molecule. Therefore, the matrix elements of
various quantum-mechanical operators, the Franck-Condon factors and tran-
sitions intensities, cannot be directly calculated.

In order to overcome the above difficulties a new expansion of the rovibra-
tional energy of diatomic molecules, based on the deformable body model [5] and
harmonic potential approximation, has been proposed [6, 7). The obtained formula
preserves the analytic form of energy eigenvalues and corresponding wave func-
tions, and satisfactorily reproduces the molecular parameters and rovibrational
spectra over a wide range of rotational states. However, the harmonic approxi-
mation does not permit an investigation of the overtone transitions and limits
the application of the formula obtained to the molecules with small deformational
susceptibility and low excited vibrational states.

Recently, on the basis of the deformable body model and the Morse poten-
tial approximation [8], an energy formula describing the rovibrational states of
diatomic molecules has been derived [9], which takes into account the centrifugal
distortion effect and has the form of a two-element continued fraction similar to
that obtained for harmonic approximation [7]. This paper is an attempt at treating
the above mentioned equation as the 6-parametric expansion of the rovibrational
energy, and employing it for straightforward evaluation of the spectral parameters
{w,wz,a, B,C, D} as well as for assignment of the rovibrational spectra of the
selected dlatomlc molecules. For our purpose, the HF, 132XeHt, and 7L1H will be
taken as test molecules.

2. Method and applications

In our previous work [9] it has been shown that energy eigenvalues of the
rovibrational Schrédinger equation (1) including the simple 3-parametric Morse
potential [8], can be given in the form
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Evy =w(J)(v+1/2) —we(v +1/2) — a(J)(v + 1/2)J (J + 1)

+B(J)J(J +1) = D(J)J*(J + 1)?, (4)
W) =el+CIJ+ D], o) =all+CIT+ D12, (5)
B(J)=B[l+CJ(J+1)]"},  D(J)=D[1+CJ(J + 1), (6)

where the spectral parameters {w,wz,a, B,C, D} can be expressed by the poten-
tial ones as follows:

B=hr*(2mr})"', w=2a/BDy, wz=a’B, (7)
C=BDy'(-a"'+3a7%), D=B?Dy(a!-2a"2), (8)
o= B:3/2D0_1/2a(~'-1a'1 —6a72). 9)

In the above equations ry denotes the equilibrium distance, Dy represents the
depth of the potential well (related to the dissociation energy of a molecule),
whereas a is the range potential parameter.

The wave functions corresponding to the eigenvalues (4) can be given as
follows [9]:

Yog = y"7 exp(—y/2) 1F1(b, c;y), (10)

y = 2a5'\/ Dy Byt exp[—as(r — rs)/ri], s = \/ Eva B7?, (11)

c=2n,7+1, b=c/2—a"1\/D;By, (12)

_ - Do — (4a=! — 6a~2)BJ(J +1)/2
7‘J—T‘o{1—a lln[D0+(——a‘1+6a—2)BJ(J+1)]}’ (13)
B 1+ [Do— (4a=! — 6a=2)BJ(J +1)/2
Gr=d {1 —e7'n [ DOO T (a1 1+ 6a-DBJ(J + 1) ] } ! (14)
By = R*(2mr3)~1, (15)

Dy = r2a~%[Do + (—a~1 + 3a=2)BJ(J + 1)) exp[—2a(rs — ro)/70), (16)

where 1 Fi(b, c; y) denotes the confluent hypergeometric (or Kummer) function.
The obtained eigenvalues (4) consist of the terms which have clear physi-
cal interpretation. Namely, the first two ones represent the energy of a harmonic
oscillator with a rotational dependence of the fundamental frequency w, and the
anharmonic energy'not perturbed by rotation, the third describes a coupling be-
tween rotation and yibration including a rotational dependence of the constant «,
whereas the last two terms are the effective rotation energy in which a modifica-
tion of the molecular constants B and D, in the J-rotational state is taken into
account. A detailed analysis of (4) leads to a few interesting conclusions:

(i) For asmall value of the constant C, the terms describing the effective rotation
and vibration energy can be expanded in a power series of the rotational
quantum number, leading to the polynomial Dunham expansion.

(ii) The eigenvalues (4) take the form of a two-element continued fraction [10]
which seems to be a more general equation describing rovibrational states
of diatomic molecules than the polynomial expansion.
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(iif) The inclusion of the anharmonic term and rotational dependence of the
w, o, B, and D constants permits introduction of the high-order corrections
to the rovibrational energy, and investigation of the molecular spectra over
a wide range of rotational and vibrational states.

(iv) The considered formula is a more strongly physically supported equation
describing rovibrational states of diatomic molecules than that derived on
the basis of the harmonic potential [6, 7].

In the light of the above facts, the formula (4) may be considered as a 6-parametric
spectral expansion of the rovibrational energy of diatomic molecules, competitive
to the standard 6-parametric Dunham formula [1]. Consequently, it may be em-
ployed for straightforward evaluation of the spectral parameters {w,wz, «, B, C, D}
(formally treated as independent parameters), and then for prediction of the rovi-
brational spectra of diatomic molecules.

TABLEI
Energy of rovibrational transitions
AE = E%, — Ecac [em™!] for R(J)
branch, v = 0 — 1, 0 — 2, of HF
molecule.

JAEL, | AEY ., AES, | AES.,
0] =0.155 | -0.197 | —0.001 | —0.054
1| -0.002| -0.074|. 0.032] -0.030
21 0.091] 0015| 0.032| -0.005
3| 0.143] 0.057| 0.024| 0.006
4| 0.132] 0.091] -0.012| 0.039
5( 0.123] 0.062| -0.013| 0.028
6| 0074 0067 —0.023| 0.058
7| -0.002| -0.052| —-0.037| 0.054
8| —0.065| 0.074| —0.025| -0.097
9| -0.131 -0.016

10| -0.177| ~0.005

11| -0.175 -0.015

12| -0.109 -0.035

13| 0.000 0.004

14| 0.253 -0.010

o 0.130 0.040

@ Eopbs from Ref. [11):
bEcalc from (4) with C = 0.
¢Fecalc from (4).
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TABLE 11
Energy of rovibrational transitions AE =
E%s — Ecalc [cm~?] for R(J) branch, v =
0—1, 1 =2, of 132XeH+ molecule.

J|AE} | AEY_, | AES,, | AES,
0 | -0.0330 | -0.0399 | —0.0141 | 0.0018
1[-0.0059 | -0.0179 [ -0.0065 | 0.0057
2| 0.0216 | -0.0010 | 0.0055 | 0.0081
3| 0.0328 | 0.0079 | 0.0059 | 0.0063
4| 0.0398 | 0.0083| 0.0073| 0.0003
5| 0.0360 | 0.0070 | 0.0032 | —0.0033
6| 0.0291 | -0.0008 | 0.0010 | -0.0099
7| 0.0185 -0.0004

8| 0.0030 | -0.0096 | —0.0033 | —0.0092
9 | -0.0182 | -0.0205 | ~0.0034 | -0.0146
10 [ -0.0239 | -0.0174 | ~0.0003 | -0.0080
11 | -0.0344 | -0.0067 | 0.0025 | 0.0018
12 | -0.0356 | —0.0014 | 0.0101 | -0.0011
13| 0.0373 | 0.0286 | 0.0098 | 0.0102
14 | -0.0140 | 0.0634 | -0.0012 | 0.0121
15| 0.0152 -0.0160

X4 0.0279 0.0085

@ Eobs from Ref. [12].
3 Ecalc from (4) with C = 0.
¢Ecalc from (4).

this paper we propose to perform the suitable calculations for HF, 132XeH+
and “Lill molecules. The best values of the spectral parameters will be determined
by the least squares routine in which the statistical weights, proportional to the
inverse of experimental uncertainties, are taken as equal to one. The uncertainty in
parentheses is one standard’ deviation in units of the last quoted digit of the fitted
parameters. The rovibrational transitions are calculated from (i) the 5-parametric
Dunham expansion (4) obtained for C' = 0, and: (ii) the full 6-parametric for-
mula (4). The calculated frequencies and the sigma standard errors of the fit are
presented in Tables I-III, whereas Tables IV and V report the spectral parame-
ters obtained by the fitting procedure, and the potential parameters {rg, Do, a}
calculated on the basis of Eqgs. (7)—(9).

Obviously, from the mathematical point of view, the spectral parameters are
not independent of each other, therefore {ro,Do,a} can be determined in a few
different ways. To this purpose we propose to employ the set {w,wz, B}, in the
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TABLE III
Energy of rovibrational transitions AE =

E& . — Ecac [em™1] for R(J) and P(J)

branches, v = 0 — 1, of LiH molecule.

J| AEY | AEL | AEy | AES
0| 0.0450 ~0.0006

1| 0.0540| 0.0184 | 0.0003 | —0.0007
2| 0.0574| 0.0024| 0.0002 | -0.0008
3| 0.0560 | -0.0139 | 0.0006 | —0.0010
4| 0.0484 -0.0285 | 0.0003 | -0.0006
5| 0.0360 | -0.0407 | 0.0004 | -0.0006
6| 0.0196 |-0.0491| 0.0010 | —0.0002
7 | -0.0010 | -0.0529 | 0.0006 | 0.0001
8 | -0.0228 | -0.0515 | 0.0004 | 0.0005
9 | -0.0430 [ -0.0448 | 0.0004 | 0.0008
10 | -0.0594 { —0.0332 | -0.0003 | 0.0008
11 | -0.0667 | —0.0170 | —0.0007 |  0.0008
12 [ -0.0604 | 0.0025 | —0.0009 | 0.0009
13 [ -0.0352 | 0.0230 | -0.0014 | 0.0005
14 | 0.0176 | 0.0422 | -0.0001 | 0.0000
15 | 0.1040 | 0.0573 | 0.0015 | —0.0004
16 0.0638 ~0.0009
17 0.0576 -0.0009
18 0.0325 -0.0008
19 -0.0180 —0.0006
20 -0.0995 0.0016
- 0.0509 0.0008

¢ Fobs from Ref. [13].
¥ Ecalc from (4) with C = 0.
¢ Fcale from (4).

case of HF and !32XeH* molecules, which provides the following relations:

ro = \/h?/2mB, Dy = w? /4w,

whereas for LiHl we take {w,a, B}, and the potential parameters will be deter-

mined from the relations

a = \/wz/B,

ro = \/h?/2mB, a = aw(8B%)~! 4-3/2,

Do = w?{4[aw/(8B?) + 3/2)2B}.

(17)

(18)
(19)
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TABLE 1V
Ground state molecular constants [cm~1] for HF, 132XeH* and 7LiH molecules, fitted to the
N? experimental frequencies.

w l wzT | o | B l D x 10% l C x 10%
HF
4134.09(29) 86.167(92) | 0.7499(18) | 20.820(16) 20.17(20)
4133.48(10) 86.008(31) | 0.430(21) 20.8999(78) | -7.9(18) 1.58(10)
4138.320 89.88% 0.798% 20.9557% 21.51%
. 132XeH+
2270.058(40) 41.3243(89) | 0.1786(84) | 6.5266(48) 2.741(77)
2270.038(12) 41.3349(28) | 0.0782(53) | 6.5392(17) -2.39(27) 0.891(47)
2269.9674¢ 41.32056¢ | 0.186686° | 6.560686¢ 2.1907¢
TLiH
1359.675(16) 9.52(96) 0.21111(28) | 7.5041(10) 8.012(24)
1359.70885(28) | 4.28(36) 0.12944(24) | 7.512196(29) | -0.0597(25) | 1.2212(35)
1405.65% 23.20° 0.2132% 7.5131% 8.617Y

¢ For HF N = 24, 132XeHt N = 30, and for "LiH N = 36.
b Data from Ref. [14].

¢ Data from Ref. [12]. TABLE V
The Morse potential parameters for molecules con-
sidered. :

Texp [A] ro [A] | Do [cm™?] a®
HF 0.916808* 0.918029 | 49662.934 | 2.028603
132X eH+t | 1.60281(6)° | 1.605448 | 31166.602 | 2.514182
“LiH 1.5957° 1.595760 | 17227.138 | 1.889844
@ Parameter dimensionless.

b Data from Ref. [14].

¢ Data from Ref. [12].

The reason for this choice is that among the first- and second-order spectral
parameters only these have the relatively smallest standard errors (see Table IV),
ensuring high precision in evaluation of the potential parameters.

3. Discussion

The performed calculations indicate that the proposed spectral expansion of
the rovibrational energy of diatomic systems reproduces quite satisfactorily rovi-
brational transitions and spectral parameters of the molecules considered in a wide
range of rotational and vibrational states. Inspection of Tables I-II reveals that in-
troduction of the C-parameter generating fraction continued terms, improves the
accuracy of calculationis by approximately one (HF, 132XeH+), and two (“LiH)
orders of magnitude, respectively. As the Morse potential allows for the overtone
transitions, the obtained formula may be applied in investigation of vibrational
transitions in a greater range of the quantum number of vibrations than the for-
mula obtained on the basis of the harmonic potential [6, 7]. Application of the
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Morse function permits also to include the anharmonic corrections to rovibra-
tional energy, making it possible to investigate the molecules with an anharmonic
type of vibrational motion.

Needless to mention that the presented approach provides the rovibrational
wave function (10), including the molecular parameters {rg, Do, a} calculated from
the spectral ones. In this way the main disadvantage of the Dunham approach is
overcome.

The proposed expansion may be of limited use in advanced rovibrational
spectroscopy of diatomic systems, because of a low number of fitted parameters,
however, in the case of molecules of poor spectra (a small number of observed
transitions) it is quite sufficient for a good reproduction of the molecular spectra.
Moreover, the fact that the presented approach besides the 6-parametric spectral
expansion provides also the corresponding wave functions in the analytical form,
favours our method to that of Dunham, as permitting a more sophisticated analysis
of rovibrational spectra.
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