Proceedings of the Winter Workshop, Karpacz 1993

SPECTROSCOPIC PROPERTIES OF Eu³⁺ ION IN KEu(MoO₄)₂ CRYSTAL

J. HANUZA, L. MACALIK, B. MACALIK AND W. STREK

W. Trzebiatowski Institute for Low Temperatures and Structure Research Polish Academy of Sciences P.O. Box 937, 50-950 Wrocław 2, Poland

IR, Raman, electron absorption and emission spectra of $\text{KEu}(\text{MoO}_4)_2$ crystal were measured at the temperature range 8-300 K. The oscillator strengths of f-f transitions were evaluated.

PACS numbers: 78.20.Wc, 78.55.Hx

1. Introduction

The aim of this study is to perform an analysis of the optical properties of the Eu^{3+} ion in $KEu(MoO_4)_2$ in order to derive the energy level scheme and its relation to the structure of the crystal.

2. Experimental

The KEu(MoO₄)₂ crystals were grown by the melt method from the stoichiometric amounts of the substrates. The electron absorption spectrum was recorded at 8 and 300 K on a Cary 17 Varian spectrophotometer. The fluorescence spectra were measured at 10, 77 and 300 K using a Spex 500M monochromator equipped with a cooled Hamamatsu R 4929 photomultiplier. The 532 nm line of a Nd:YAG laser and EG and G 2100 dye lasers were used for excitation. Decay studies were performed under 532 nm excitation using a Tektronix 2440 digital storage oscilloscope.

3. Structure and phonon properties

In the spontaneous growth from the melt we obtained β -phase of KEu(MoO₄)₂ crystal. The structure of that phase was described briefly by Klevtsov and Klevtsova [1] as monoclinic with Z = 12. Our analysis of the powder diffraction pattern of this compound reveals that they omitted in their calculations several low-angle diffraction lines. We have found that this crystal is monoclinic with space group $P2_1/C \equiv C_{2h}^5$ and its primitive unit cell contains 16 molecules. This structure is a modification of the scheelite CaWO₄. The unit cell of the crystal

studied consists of isolated WO_4^{2-} tetrahedra of the C_1 symmetry. Europium(III) ions lie inside several different oxygen polyhedrons with the Eu–O average bonding equal to 2.43 Å and Eu–Eu smallest distance equal to 3.88 Å.

The phonon properties of $\text{KEu}(\text{MoO}_4)_2$ have been previously reported by us [2]. The IR and Raman spectra were published and discussed in detail. These data were employed in the analysis of the vibronic sidebands of emission spectra and the role of electron-phonon coupling in the energy transfer.

4. Electron absorption and emission studies

Absorption spectra measured at 300 and 8 K are shown in Fig. 1. The assignment of absorption bands and their oscillator strengths are given in Table I.

Fig. 1. Absorption spectra of $KEu(MoO_4)_2$ crystals measured at 300 and 8 K.

The low-temperature emission spectra recorded at 15 K are shown in Fig. 2. The emission transitions have originated from ${}^{5}D_{0}$ and terminated on ${}^{7}F_{J}$ lev-

lator strength values for $\text{KEu}(\text{MoO}_4)_2$ crystal.						
Term	Spectral range	$P_{\rm exp} \times 10^8$				
	[cm ⁻¹]	-				
⁷ <i>F</i> ₆	4292-5882	296.89				
⁵ D ₀	16600-17500	3.49				
⁵ D ₁	18868-19066	30.89				
${}^{5}D_{2}$	20833-21978	55.01				
${}^{5}D_{3}$	23419-24096	16.93				
${}^{5}L_{6}, {}^{5}G_{2}, {}^{5}L_{7}, {}^{5}G_{3}$	24814-25543	162.17				
${}^{5}G_{4}, {}^{5}G_{5}, {}^{5}G_{6}$	25510 - 26882	129.36				

25510-26882

26846-27972

The assignment of absorption bands and their lator strer

 ${}^{5}L_{8}$

Fig. 2. The low-temperature (15 K) emission spectra of $KEu(MoO_4)_2$ crystals.

els, where $J = 0 \div 4$. The assignment of emission lines is given in Table II. The most intensive observed band is associated with the hypersensitive transition ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$, $|\Delta J| \leq 2$. The intensities of successive bands change as ${}^{7}F_{0}: {}^{7}F_{1}: {}^{7}F_{2}:$ ${}^{7}F_{3}: {}^{7}F_{4} = 1:10:144:4:15$. We have found that the band associated with the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition, which is expected to be a single line, was splitted into three peaks. A similar behaviour was noted for ${}^7F_0 \rightarrow {}^5D_0$ bands in absorption spectra which also was splitted into three peaks. Their energy positions are almost identical (see Table II). Such a behaviour means that at least three crystallographic sites of Eu(III) coexist in $KEu(MoO_4)_2$ crystal and give contribution to the observed spectra.

TABLE I

54.81

TABLE II

Transition	300 K	15 K	Transition	300 K	15 K
${}^7\!F_0 \leftarrow {}^5\!D_0$	17265	17253	${}^7\!F_2 \leftarrow {}^5\!D_0$	16455	16477
	17247	17241		16420	16442
		17230		16337	16324
				16265	16260
${}^7\!F_1 \leftarrow {}^5\!D_0$		17013		16258	16244
	16989	16978		16239	16234
	16978	16955		16085	16067
	16949	16932			
	16926	16915	$^7F_3 \leftarrow {}^5D_0$	15344	15347
	16915	16903		15305	15295
	16886	16880		15281	15277
	16875	16863			
	16863	16846	$^7F_4 \leftarrow {}^5D_0$	14438	14422
	16812	16801		14397	14401
	16801	16790		14364	
•	16779	16762		14269	14269
	16762			14247	14245
	16750			14217	14217
				14201	
				14170	14168

The emission lines of Eu^{3+} at 300 and 15 K in the $KEu(MoO_4)_2$ crystals.

References

R.F. Klevtsova, L.P. Kozeeva, P.V. Klevtsov, Kristallografiya 19, 89 (1974);
R.F. Klevtsova, *ibid.* 20, 746 (1975); P.V. Klevtsov, W.A. Winokurov,
R.F. Klevtsova, *ibid.* 18, 1192 (1973); P.V. Klevtsov, L.P. Kozeeva, A.A. Pavlyuk,
ibid. 20, 1216 (1975).

[2] A. Pietraszko, J. Hanuza, L. Macalik, M. Mączka, in preparation.