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SPIN-ORBIT COUPLING FOR f -ELECTRONS
IN A CRYSTALLINE FIELD
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Institute of Physics, Adam Mickiewicz University
Matejki 48/49, 60-769 Poznań, Poland

The notion of a spin—orbit interaction arises from consideration of dy-
namics of multielectron atoms, i.e. systems of N electrons in a spherical
potential. This notion is essentially a single-particle one. We sketch its ori-
gin as a second-order correction when Dirac four-component wave equa-
tions for an electron in external electromagnetic fields are simplified to the
two-component Pauli spinors. The constraints in spinorial degrees of freedom
consist, roughly speaking, in neglecting the small component of the electron
four-function. The spin—orbit interaction term serves to compensate effects
of the small component. The crystalline field induces some deviations from
spherical symmetry of an isolated atom, which yields some modifications of
the spherical form of the spin—orbit interaction operator. These modifications
can be described in terms of a number of tensor operators adapted to ap-
propriate chains of subgroups of the spherical symmetry group. We present
a classification of independent tensor operators and discuss the relevant pa-
rameters for f-ions.

PACS numbers: 71.70.Ch

1. Introduction

The aim of the present article is to provide a review of some notions related
to the spin-orbit interaction in f-electron systems. First we explain the origin of
this interaction as a result of simplification of the exact Dirac four-component
wave equation for an electron in an external electric field to the two-component
Pauli theory, used extensively in the quantum theory of multielectron atoms [1].
Then we describe a classification of independent radial parameters for a complete
presentation of effects of the spin-orbit interaction in a crystalline field, which
breaks the spherical symmetry of the central field of an atom to the point symmetry
of its crystal environment [2, 3].
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2. Origin of the spin-orbit interaction

Experimental foundations of a spin-orbit coupling arose in the very early
stage of interpretation of the fine stucture of atomic spectra. A typical energy level
of a multielectron atom is characterized by LS quantum numbers which describe
the orbital and spin angular momentum of the electronic shell. For a sufficient
spectroscopic resolution, this level splits into 2S+ 1 sublevels, characterized by the
total angular momentum J of the shell. The stucture of this splitting is attributed
to the spin-orbit interaction, which is given — within LS Russel-Saunders term
— by a simple Hamiltonian

where L and S are, respectively, orbital and spin angular momentum operators,
and λ describes the strength of the interaction. Using an elementary formula

where the last equality holds only within the manifold of all states of the LS term,
one gets

which, in particular, yields the Lande ule

for energy separation between consecutive fine energy levels  E.,.
Such a solid experimental basis seems to suggest that the spin-orbit cou-

pling belongs to the principal interactions in the nature. Actually, in the light of
present stage of quantum theory, it looks that the spin-orbit coupling is an effect
of some approximations rather than a real interaction. Moreover, it should not
be attributed to as a purely "relativistic" or "quantum" effect, but emerges also
from theories based on Galilean group [4, 5] and classical theory (like Thomas
precession [6, 7]). In this paper, however, we shall follow a traditional Lorentzian
relativity and the quantum Dirac equation. Let

be the Dirac Hamiltonian for an electron in an external electrical field of the
potential V, with

being the standard Dirac matrices, where o is the Pauli 2 x 2 vector matrix, I —
the unit 2 x 2 matrix, m — the rest mass of the electron, and c — the velocity of
light. The eigenproblem of the Hamiltonian 'RD reads
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is a four-component Dirac eigenstate of energy E, with φ and χ being the large
and small components, respectively. Introducing the "Schrödinger energy" W by

one rewrites the eigenproblem (7) in the form

From Eq. (10b), the small component is

where

is a real function of position r, with the values in a proximity of 1 for sufficiently
low energies W (|V — W| K 2mc 2 ).

A transition from the Dirac to Pauli theory of an electron consists in re-
placing the Dirac Hamiltonian H D and the four-component wave function Ψ by a
Pauli Hamiltonian

and the large component φ as the corresponding twocomponent wave function.
The term k = 0 in the expansion (12) corresponds to the Schrodinger Hamiltonian
p /2m +- V, whereas the term with k = 1 yields the following corrections

The first form in Eq. (14) corresponds to the effect of dependence of mass upon
electron velocity, the second is the Darvin trembling term related to virtual cre-
ation and anihilation processes in the vicinity of a singularity of the electric field,
and the third describes the spin-orbit coupling.

Chatterjee and Lulek [1] examined a question whether the third term in
Eq. (14) is the most general form of spin-dependent energy of an electron within
the Pauli theory. To this aim, they considered the Pauli eigenproblem in a form

where

is the normalized twocomponent Pauli function, R is a singular operator which
has to reduce some discrete degrees of freedom of the Dirac description, and

The simplest choice is
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which selects the large component φ as the Pauli eígenstate ψP, but it is Cleary
not a unique possibility, and, moreover, it does not preserve the normalization
with the required accuracy (for k = 1 in the expansion (12)). One can allow for
an admixture of a small component x, but it yields some difficulties with proper
account of parity.

We recall that the parity operator Ι for the electron in Dirac theory is fac-
torised as

where β, given by Eq. (6), is the intrinsic parity of Dirac fleld, imposed by the cor-
responding irreducible representation D(1/2,0)  D(0,1/2) of the full Lorentz group,
and Ι0 is the orbital parity. Their actions on Dirac wave functions are given by

and thus

It implies that if IΨD (r) = ΨD(-r), then the large and small components have
opposite orbital parities. In fact, it is the case of hydrogenic Dirac wave functions

with

Effectively, the main shortcome of the Pauli theory of an electron, as compared to
Dirac one, is lack of internal parity, which leads to neglecting the effects of relative
parities of the large and small component of Ψ under a projection into ϕP. Still,
as it was pointed out by Chatterjee and Lulek [1], the projection operator R in
Eq. (16) can be presented (within the approximation up to k = 1), in a general
form as

where A and B are some arbitrary constants. It yields the following two spin-de-
pendent corrections to the Hamiltonian:

and

The latter is the ordinary spin-orbit Hamiltonian of Eq. (14) with a renormalized
coupling constant, whereas the former corresponds to the effects of broken internal
parity. Putting A = 0 we achieve only the ordinary term H 30 . In the following we
restrict our considerations to this form.
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3. Form of the spin—orbit coupling in the central and crystalline
electric fields

In the central field of an atom the potential V exhibits the spherical sym-
metry, i.e. V(r) ≡ V(r), r = |r|, so that

and the spin-orbit interaction operator for a single electron takes on the form

with

In the case of an electronic shell (nl)N the Hamiltonian takes the form

where

is the average over the radial wave functions. For Coulomb potential V = Ze 2 /r,
ζnl(r-3). Within a singleLSRussel-Saunders term, the Hamiltonian (31)

reduces to that of Eq. (1).
In the presence of a crystal electric field

the form of the spin-orbit interactions has to be modifled along the multipole
expansion (33). The corresponding expansion in terms of double tensor operation
reads [2, 3]

where V(k'1)kA1 is the double tensor operator with the orbital rank k', spin 1, the
resultant spherical rank k, and Α 1 denotes the unit irreducible representation of
the point symmetry group of the crystalline field. A(k'1)k  are parameters related
to the strength of anisotropic  spin-orbit interaction. Their number is equal to the
number of appropriate invariants of a given point group, and increases considerably
for low symmetries of the crystalline environment of an ion.

In the case of an f-electron iná cubic symmetry, the term with Α(11)0 corre-
sponds to the spherical spin-orbit interaction, whereas other 5 parameters describe
corrections due to the cubic anisotropy (cf. Table I). They are discussed by Kibler
and Grenet [8].

Table II presents the corresponding classification for a trigonal crystal field,
using the chain of subgroups
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Appropriate double tensor operators, adapted to this chain, are denoted by

where Δ '  is an irreducible representation of the cubic group 0, corresponding to
the spherical orbital rank k', and Δ' is its counterpart in the trigonal symmetry
group D3. Some of these parameters can be looked at as simple generalizations of λ
in Eq. (1) to the λ || and λ, corresponding to the z and xy positions, respectively,
but some other are essentially new forms of anisotropic  spin—orbit coupling [9-11].

In general, anisotropic spin-orbit parameters are so small in comparison
with the crystal field contributions Vk q , that they have rather little influence on
the stucture of energy spectum. Exceptional cases are s-state ions, in particular
those with the half-filled shell [3, 12], and some orbital singlets [10, 12] and dou-
blets [13], where the ordinary crystal fleld does not contribute to the splitting in
the first order. Also some triplets can help in distinguishing between λ || and λ1
parameters [9].

4. Final remarks

We have reviewed some considerations related to the spin-orbit interac-
tion. This interaction arises as a compensating term accompanying the reduc-
tion of the Dirac theory of an electron in an external electric field to the theory
of Pauli. The main simplification of the Pauli theory is the reduction from four
to two components of the wave function, which excludes the internal parity and
cancels the effects of relative parities of the large and small components of the
Dirac states. We have pointed out after [1] that the very known formula, used
here in Eqs. (1), (14), (26), (29), (31) or (34), is not the only possible form of
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spin-dependent corrections to the Pauli Hamiltonian. Clearly, it has proved a pos-
teriori to be an adequate term for a proper account of the fine structure of all
known atomic spectra. It is still an open question whether there is another im-
portant spin-dependent term, n) given by Eq. (27). It may be relevant in, say,
multicentre electric field in systems without the centre of inversion.

We have also listed anisotropy parameters of the spin-orbit coupling in a
crystalline field, and pointed out their role in determinatition of energy spectra of
paramagnetic ions in crystals.
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