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A system comprising of two adjacent layers of conduction electrons or
alternatively a layer of electrons and a layer of holes can exhibit novel in-
stabilities in the liquid phase towards inhomogeneous ground states. The
carriers in the two layers can couple to each other through the Coulomb
interaction but they are not permitted to tunnel so that the charges in one
layer act as a polarisable background for the other layer. The presence of a
second layer encourages the formation of novel ground states with inhomo-
geneous density distributions. We find theoretical evidence for the existence
of charge density wave ground states and also a coupled Wigner crystal.
These exist at much higher densities than the Wigner crystallisation density
for the single layer case. The existence of these inhomogeneous ground states
leads to significant modifications of the low lying excitation spectrum in the
uniform liquid phase. Near the transitions to both the charge density wave
and the coupled Wigner crystal phases we find evidence of the development
in the liquid phase of new soft mode excitations of finite wave number q
that are precursors of the inhomogeneous ground states. Near the transition
to the coupled Wigner crystal we observe a strong tendency of the single
particle excitation spectrum for the liquid phase to renormalise into a single
line that has a dispersion closely resembling the phonon dispersion curve for
the solid.

PACS numbers: 73.40.Lq, 71.45.Gm, 71.45.Lr

1. Introduction

In ordinary metals the conduction electrons are only weakly interacting, the
potential energy playing only a minor role and interaction effects being well ac-
counted for by linear screening. The excitation spectrum of the system consists
only of non-interacting single-particle excitations together witl the plasmon col-
lective mode.

At very low densities Coulomb correlations become the dominant effect and
they can control both the type of ground state that is formed and the nature
of the excitation spectum. Thus, for example, in the pure electron solid the low
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lying excitation spectum contains phonons rather than plasmons and it is an
interesting question to consider the extent to which the change in the spectum
from the plasmon collective mode plus single-particle excitations of the liquid
across to the phonon line of the solid is a continuous evolution or a sudden jump.
In conventional materials the densities needed to access the strongly correlated
region of phase space for the electrons are so small that experimental observations
within this region have only been possible in strong external magnetic fields. The
lowest density of electrons in bulk metals corresponds to about r s = 6 whereas
the transition to the electron solid (the Wigner crystal) in zero magnetic field is
predicted to occur close to r s = 100 [1]. The paramter r s is the average spacing
between electrons in units of the effective Bohr radius α3.

During the past decade there has been a great deal of interest in the high-mo-
bility twodimensional electron system. Electrons trapped in thin layers at inter-
faces of gallium arsenide heterostuctures are more strongly correlated than elec-
trons in the bulk at the same density because of the smaller kinetic energy contri-
bution in a system with only two spatial degrees of freedom. The Wigner crystal
transition in two dimensions for example is predicted to occur at r s = 37 ± 5 [2].
However the small electron effective mass in GaAs, m*/m 0.07, and the large
dielectric constant wlicl for GaAs is ε 13 means that in r s terms even the
lowest density of electrons in a conducting layer is in the relatively high density
region rs < 5. Holes have larger effective masses and densities as low as r s = 19
have recently been reported for layers of holes [3].

We have proposed that strong correlations in the electron or hole hiquid could
be further investigated experimentally in the absence of a magnetic fleld by using
Semiconductor heterostructures with two coupled layers [A, 5] of charge carriers.
The correlations in two layer systems are stronger than for a single layer because
the charge carriers in the first layer can couple to the carriers in the second layer
and vice versa, so that each layer acts as a polarisable background for the other.
A continuous range of densities in one of the layers can be obtained by using a
gated stucture.

We have shown that the twolayer system has a rich diagram of inhomoge-
neous ground states, including Wigner crystals and charge density waves (CDW)
[4]. Charge density waves can occur at densities much higher than those at which
the transition into the aligner crystal occurs.

The mixed system of one layer of electrons and the other of holes may be an
even richer subject for study from both theoretical and experimental viewpoints.
The interaction between layers is attractive, the attractive interlayer correlations
competing with the repulsive correlations witlin each layer. The electrons and
holes can pair into excilonic-like bound states leading to additional exotic ground
states including the possibility of superfluidity [6, 7].

2, Response function of the system

The system we are considering consists either of two layers of electrons or
one layer of electrons and one layer of holes trapped at two adjacent interfaces in
a semiconductor heterostucture. We assume that only the lowest subband in the
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potential well at the interface is occupied. In the following formalism all interac-
tions contain suitable form faction to account for the finite width of the layers.
If an external potential Vlext(q,ω) is applied to the system it will induce density
changes δn 1 and δ 2in the two layers. The total potential acting on the first layer
will be V1ext(q,ω) plus the interaction induced by changes in electron density in
the second layer δn2 , and vice versa. The induced electron density in the Ith layer
will be

where Vr (q) is the bare Coulomb intercation between electrons either in the same
layer (1 = l') or in different layers (l Ο l'). The response function of the sys-
tem χ 3 (q, ω) neglects the interaction between the charged carriers but takes into
account the effect of scattering by defects

x0(q, ω) is the finite temperature Lindhard function. The single-particle memory
function γs (q, ω) [8] accounts for scattering of the carriers by defects. Here we set
γs(q,ω) equal to a constant, γ s = (iτ) -1 , where τ represents the time between
scattering of a charged carrier off defects. τ is related to the electron mobility
parallel to the layer μ by the usual Dude expression.

The static local flelds [9] Glp(q) in Eq. (1) reduce the strength of the inter-
action between two electrons because of the reduction in the probability of finding
an electron in the vicinity of another electron.

The response function matrix of the two layer system χll' (q, ω) is defined by

The matrix Xll'(q,ω) can be diagonalised, the diagonal elements χ±(q,ω) describ-
mg the response of the system in which the density modulations δ nl(q, ω) in the
two layers are in phase for the + label and π out of phase for the - label. Using
Eqs. (1) and (3) we obtain

The static local field G11(q) within a layer is extracted in our approach from
the Monte Carlo simulations results using the procedure introduced by Swierkowski
et al. [4] and Neilson et al. [8]. First we write the response function for a single
isolated layer x(q, ω), i.e. in the absence of coupling between layers,

Tanatar and Ceperley [2] calculated the pair correlation function g(r) for the range
of densities down to the crystallisation point using Monte Carlo methods. The
Fourier transform of the pair correlation function gives the static structure factor
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which in turn is linked with the local field in Eq. (5) by the fluctuation-dissipation
theorem. It is worth noting at this point that the pair correlation function g11(r)
obtained from Eq. (7) in the presence of interlayer interactions is non identical to
the Monte Carlo g(r).

Since in the absence of tunnelling the twolayer system is formally equivalent
to a two-component plasma, we can calculate the interlayer local fleld G12 (q) using
the method introduced by Singwi, Tosi, Land and Sjolander (STLS) [10] gener-
alised to a two-component plasma [11]. In the STLS approach the density-density
correlation function is approximated by a product of two densities times the static
pair correlation function,

The symbol distinguishes the operation δnl(r, t) from their expectation values
δnl(r, t). If we replaced 812 (r- r') in Eq. (6) by unity we would recover the Hartree
expression.

Equation (6), together with the relation linking the pair correlation function
gll' (r) with the static stucture factor Sln (q),

gives an axpression for the local field [10-12],

n is the average density in one layer. Equations (4) and (8) taken with the
fluctuation—dissipation theorem

make up a set of self-consistent equations for G12(q) [13]. For simplicity we have
assumed in Eqs. (4-9) that the densities in both layers are identical. The general-
isation to the case of different densities is straightforward.

The procedure for calculating G11(q) and G22(q) from the Monte Carlo re-
sults for uncoupled layers and calculating G12(q) using STLS can only be fully
justified in the case of weak coupling between layers. In other cases (which would
include some of our low density results) this approach should be regarded as an
initial approximation.

3. Ground state properties

We have used the theory developed in the previous section to calculate the
static response functions x±(q) at a number of different interlayer spacings a for a
fixed density. We find if the layer spacing is decreased sufficiently that X- (q) can
develop a singularity at some finite q.

Figure 1 shows the static diagonal element X_ (q) for two layers of electrons.
For X.(q) the density modulations δnl in the adjacent layers are π out-of-phase.
This configuration has a lower energy than the configuration in which the density
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modulations for the two-electron layers are in-phase. Figure 1 shows results for
two density values, r,s = 10 and 30 fora number of interlayer spacings α.

For rs = 10 the peak in X- (q) is centred at |q| = 2kF. As αn is decreased the
peak grows and finally diverges when α = αc 37 nm.

For r s = 30, αn 195 nm. There are two peaks in x-(q), one centred at
|q| = 2kF and other at a somewhat larger value of | q|. We interpret the peak at
| | = 2kF as an incipient instability to a charge density wave ground state. The
peak at |q 2.5kF we associate with an incipient instability to coupled Wigner
lattices in the two layers. As the layers are brought closer together it is the charge
density wave peak that eventually diverges. We find for densities below r s = 30
the Wigner crystal peak becomes the flrst of the two peaks to diverge.

The divergence of the static response function establishes some limits on the
stability of the liquid phases in the two layers. Figure 2a shows a possible phase
diagram for two-electron layers as a function of the electron density in each layer
r s and the spacing between the layers α. Three phase regions are shown, the liquid
state, the charge density wave (CDW) ground state and the Wigner crystal. For
fixed r s in the range 5 ≤ rs ≤ 30, there is a transition as the layer spacing is
decreased from the liquid to a charge density wave ground state. For r s in the
range 30 ≤ rs ≤ 37, the transition from the hiquid is into a Wigner crystal state.
Monte-Carlo data tells us that for r q ≥ 37 the ground state for the single layer is
the Wigner crystal [2]. The single layer corresponds in our formalism to the limit
when the two layers are not coupled, α --> ∞. For very small α the real system
should once again resemble a single layer as the two layers merge and we speculate
there is another phase transition back to the liquid ground state as α goes to zero.

Fora layer of electrons coupling to a layer of holes it is the in-phase response
function x + (q) that can become singular. Figure 2b shows the phase diagram for
this case. This system would be expected to crystallise more readily due to the
attractive interaction between the electrons and the holes, and we find indeed that
the transition to the Wigner crystal occurs at a density as high as r s = 15 for a
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layer spacing of αc s: 80 nm. At higher densities the transition is to a charge density
wave, one in which the density modulations in the two layers will be in-phase. For
coupled electron—hole layers the situations is complicated as the layers are moved
together and there are a variety of possible ground states of the system [6, 7]. This
is beyond the scope of the model we are using and we do not attempt to speculate
on the nature of the phase diagram for small α.

It is instuctive to show the behaviour of the pair correlation functions close
to a transition. Once the local flelds are known, Eqs. (4), (7) and (9) can be used
to obtain the pair correlation functions. Figure 3 shows the intralayer correlation
function g 11 (r) and the interlayer correlation function g12(r) for coupled electron
layers at a density of r s = 30 for the interlayer spacing, αn = 1.01αc 195 nm.
Very close to the transition the oscillatory peaks in g 11(r) and g12 (r) become pro-
nounced. This is to be expected and reflects the proximity in energy of an excited
state with an inhomogeneous density distribution. Tle matching of maxima of
g11(r) with the minima of g 12 (r) can clearly be seen and indicate the extent to
which the correlations in the two layers act to strongly compensate each other.

Figure 4 shows the corresponding results for coupled electron—hole layers
with α = 1.01α 	 135 nm. g 12 (r) (broken line) is greater than unity for small r



Electron Liquids in Coupled Quantum Wells 451

because of the attractive interaction. Within the STLS approximation formation
of a bound exciton pair would show up as a divergence of the calculated g 12 (r) for
small r [14].

4. Excitation spectrum of the two-layer system

It is well known from random phase approximation (RPA) calculations that
the collective mode spectum of the many layer systems is much richer than that
of a single layer. The plasmon mode for the N-layer case splits into N collective
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excitations, and for an infinite number of layers (as superlattice) a plasmon band
is formed.

We find that correlations are responsible not only for quantitative changes
in the collective mode spectum but that the changes can affect the nature of the
spectum itself. Modes can disappear altogether, while new modes, associated with
the phase transition from liquid to more ordered phases can appear.

4.1. Plasmon modes

Figure 5 shows the low lying collective modes for two coupled layers for a
spacing between the layers of α = 47 nm compared with RPA [15]. One of the two

collective modes has a plasmon-like dispersion as q → Ο (ħω |q| 1/2 ) while the
energy of the second mode ("acoustic" plasmon) vanishes linearly with q because
the out of phase density modulations in the opposite layer screen out the long
range part of the Coulomb potential.

It is interesting to contrast how many-body correlations between electrons
affect the long wavelength dispersion of these two eigenmodes. Their inclusion
through the local fields Gw (q) decreases the effective strength of the Coulomb in-
teraction so the gradients of both plasmon dispersion curves are less than for RPA.
We see in Fig. 5 that it is only at relatively large wave numbers that many-body
correlations affect the plasmon for the single layer and the plasmon corresponding

.

	

	 to the δn+ (q,ω) eigenmode. This is to be expected since many-body correlations
primarily affect properties of the electrons at small Separations. However the result
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for the acoustic plasmon corresponding to the δn- (q, ω) eigenmode is noteworthy.
Figure 5 shows that many-body correlations affect this plasmon down to essen-
tially zero wave number. Our calculations for smaller layer spacings show that
many-body correlations may push the IRA acoustic plasmon almost completely
into the single-particle excitation region and it ceases to exist as an independent
collective excitation.

4.2. CD 1V instability

At rs = 10 the instability towards a charge density wave occurs when the
spacing between the layers has a value αc = 43.5 nm. Figure 6 shows Imχ-(q, ω)
at fjxed q = 2kF. There is a strong shift of spectral strength within the single

particle excitation region towards momentum transfer q 2kF. This indicates a
concentration of low lying excited states with a density modulation period close to
that of the incipient charge density wave instability. The appearance of this mode
indicates that it costs relatively little energy to excite the system into a state with
a periodic modulation of the density. The closer the soft mode is to zero energy
the longer spontaneous fluctuations into a density modulated excited state can
remain and there would be a tendency for the system to be unstable to a periodic
charge density wave ground state.

As the precursor of the charge density wave ground state in the liquid phase
the soft mode could be used to experimentally confirm the existence of charge
density waves. A sizeable new peak appearing in the liquid stucture factor S(q, ω)
at q 2kF and small ω would be observable using standard Raman scattering
techniques. .
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4.3. Wigner crystal instability

For some interlayer distances at low density a new mode appears on the large
q, low energy side of the single-particle region of Imχ- (q, ω) (Fig. 7). This new

mode occurs only for a narrow range of q centred on | q | = |G| 2.45kF, where
G is the primitive reciprocal lattice vector in the X direction for a hexagonal
Wigner lattice at the same density. The energy of this mode is very small and if
the layers are moved closer together, the energy of the mode drops towards zero.
We interpret this mode as a quasi soft mode previously reported for the Single
layer [8], a dynamic precursor to the Wigner phase. This precursor is a low lying
transient excitation of the liquid phase which mimics the symmetry of the Wigner
lattic. At the phase transition from the liquid to the solid the mode touches ω = Ο
precisely at q = G. The softening of the mode is correlated with the enhancement
of the static response function that occurs in the vicinity of q = G. When the mode
softens to zero energy the static response function becomes singular for q = Ο.

An overall view of the spectral strength of the excitations, Ιmx_ (q, ω), for
rs = 32 as a function of q and ω is given in Fig. 8. On the high energy side of the
single-particle excitation region we See the plasmon. For clarity it is represented
by a series of discrete peaks and we have assumed here a small value for γs . On the
high-q, small ω side of the single-particle excitation region the soft-mode is clearly
visible. It is also clear that there is a collapse of single-particle spectral strength
into a distinct ridge which connects the plasmon cut-off on one side with the new
collective mode on the other.

We interpret this as showing that the spectral strength of the liquid is evolv-
ing into a single dispersion curve with a shape similar to that of the phonon in the
Wigner crystal. We have previously seen evidence for this with the solidification
transition for a single layer [16]. Figure 9 taken from Ref. [16] shows the phonon
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dispersion curve for a single layer at density rs = 35 taken from Bonsall and
Maradudin [17]. In two dimensions the lattice configuration with the lowest en-
ergy has hexagonal symmetry. Figure 9 is in the X direction of the Brillouin zone.
The curve has an axis of symmetry at q = 1/2 G. Figure 9 compares the phonon
curve of the solid with the full many-body piasmon dispersion curve for the liquid
at the same density calculated by Neilson et al. [8]. The negative dispersion of
the plasmon curve is caused by dynamic correlations electrons in the liquid. For
small k| « kF the plasmon and phonon curves must agree because of the long
range nature of the Coulomb interaction, but for values of |  | comparable to the
inverse of the interparticle spacing in the liquid there is no axis of symmetry and
no a priori reason to expect the plasmon to bend over at the same rate as the
phonon. The new low energy collective mode in the liquid phase matches up with
the phonon curve near | q| = | G^, so the dynamic correlations in the liquid phase
also reflect the hexagonal symmetry of the two-dimensional solid.

5. Conclusions

The properties of two-layer systems are markedly different from the prop-
erties of electrons in a single layer. Interactions become much more important at
relatively higher densities and the strong correlations can fundamentally change
the nature of the ground state. We found for layer densities as high as rs = 5 that
a charge density wave ground state can develop if the layers are sufficiently close
to each other. For a layer of electrons coupled to a layer of holes a coupled Wigner
crystal ground state can form for carrier densities of rs = 15. This result is of
special significance given that single hole layers have now been fabricated having
densities as low as rs = 19 [3].

The second layer not only affects the ground state properties but it also alters
the dynamic properties of the liquid phase particularly near the phase transitions
to the inhomogeneous ground states. For both the charge density wave and coupled
Wigner crystal transitions we found development in the liquid of a soft mode
that acts as a precursor for the transition to the corresponding inhomogeneous
state. In the case of the transition to the electron solid we found evidence that
the single-particle excitation spectrum was collapsing into a ridge connecting the
plasmon dispersion curve and the soft mode centred at q = G in such a way that
the entire spectum resembled the dispersion curve of the lowest lying phonon
excitation for the electron solid. We interpret this as indicating that the change in
the excitation spectum of the liquid evolves continuously into the phonon line as
the phase transition to the solid is approached.
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