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Perturbation solution of the Boltzmann equation for a dilute gas with
a chemical reaction A + A B + B is presented. Analytical results for
the nonequifibrium effects on the rate of chemical reaction are obtained for
the line-of-centers model. It is shown that taking into account the energy
transfer from reagents A to products B permits to get new results. The
nonequifibrium corrections obtained from these results are much larger than
those obtained with neglecting this energy transfer. These results are veri-
fied by a comparison with the numerical results obtained from the modifred
Nanbu-Babovsky Monte Carlo computer simulations.
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1. Introduction

In a dilute gas in which a bimolecular reaction takes place the Maxwell-Boltz-
mann velocity distribution function changes to nonequilibrium distribution. Pri-
gogine and coworkers [1, 2] have used the perturbation Chapman—Enskog [3, 4]
method of solution of the Boltzmann equation and they have shown that this effect
diminishes the rate constant of chemical reaction. Present [5, 6] has analyzed this
effect for the reactive crosS-section described by the line-of-centers model, which
is very suitable for such an analysis. In analytical results for the rate constant
of chemical reaction, described by this model with total neglecting of products,
the nonequilibrium effects do not exceed 8%, whereas for the Maxwell-Boltzmann
distribution function this model leads to the Arrhenius expression [5, 6]. Shizgal
and Karplus [7] have confirmed the results of Present. Fitzpatrick and Desloge [8]
have shown that neglecting of products has a small effect on such results.

However, as it can be seen from the review written by Popielawski [9], for
chemical reactions the results obtained from the perturbation method of solution of
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the Boltzmann equation, contrary to expressions for viscosity, thermal cossuctiv-
ity and diffusion coefficients, cannot be directly compared with experimental data.
That is why, recently other possibilities of verification of the results obtained by
the perturbation method in this case have been used. Namely, for chemical reac-
tion proceeding in the Lorentz gas, reasonable comparison between such results
and the results obtained from the exact numerical solution of the Fokker-Planck
equation [10-12] has been performed. We also decided to compare the results ob-
tained from the perturbation solution for the bimolecular chemical reaction in the
dilute gas with the results from the Monte Carlo computer simulations of solu-
tion of the Boltzmann equation for this reaction. We have chosen the modified
Nanbu-Babovsky direct simulation method [13-19] because this method has been
very effective in comparison between analytical and numerical results in the anal-
ysis of relaxation of translational energy in a dilute gas [20-22]. Introducing an
additional term in the perturbation solution of the Boltzmann equation we have
shown [23] that the nonequilibrium effect on the rate constant of chemical reaction
can be much larger than in Refs. [5-8] and that similarly as in the Lorentz gas
[10-11] the results are accurate for slow reactions only. These results [23] have
been also confirmed by the molecular dynamics simulation method developed by
Gorecki [24-26].

As our results [23] looked interesting, we decided to analyze them more care-
fully before a final publication. For this purpose we concentrated our attention
on the more careful analysis of our treatment of the perturbation method and on
improvement of the accuracy of numerical results. The first part of these results
connected with perturbation of thermal equilibrium by a simple chemical reaction
has been already presented [27]. Recently, the results from Ref. [23] have been
confirmed by a simple theoretical analysis [28] assuming that nonequilibrium ef-
fects are mainly resulting from a change of temperature in the Maxwell-Boltzmann
velocity distribution function. For slow chemical reactions our analytical results
from Ref. [23] have been also confirmed by Gorecki [29] who used the socalled
phenomenological kinetic equations and verified them by molecular dynamics sim-
ulations.

In this paper we present the theoretical treatment in the form developed from
the version which was improved by Prof. Popielawski before his sudden death ass
the results of computer simulations performed with a better accuracy than in
Ref. [23].

Our paper is organized as follows: In Sec. 2 we formulate the Boltzmann
equation for the chemical reaction described. In Sec. 3 we describe the perturba-
tion method of solution of the Boltzmann equation. In Sec. 4 we present for the
line-of-centers model the analytical results for the change of the rate constant of
chemical reaction due to nonequilibrium effects, whereas in Sec. 5 we show for a
comparison such results obtained in traditional way. After a description of the sys-
tem used for the modified Nanbu-Babovsky Monte Carlo computer simulations in
Sec. 6, in Sec. 7 we compare our new analytical results with those obtained in the
traditional way, i.e. with the total neglecting of the products of reaction as well
as with the numerical results from Sec 6. Finally, in Sec. 8 we discuss the results
obtained and make conclusions.
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2. The Boltzmann equation for a gas with chemical reaction

We consider the following bimolecular reaction in the dilute gas:

• and neglect all heat effects of this reaction, i.e. we assume that this reaction is
neither exothermal nor endothermal one. However, we will take into consideration
that, even in the simplest models of reactive collisions, the particles of product

• B need not have the same average kinetic energy as the particles of reagents
A. Assuming that 'the system is well stirred we can write down the following
Boltzmann. equation [1]:

where fi and fl are the velocity distribution functions for i-th component (i =
A, B). before and after collisions, respectively, A 1 is introduced to distinguish two
molecules of the component A, t is the time, σij and σ*ij are the differential elastic
and reactive cross-sections for colliding molecules i and j, ci and ci are their
velocities, gib = ci - c j, ,Ωij denotes the solid angles.

Adapting the usual normalization

where ni is the number density of i-th component we introduce the temperature
of the system by

where n = nA + nB, kB is the Boltzmann constant, mi s the mass of the molecule
of i-th component. Let us introduce as Shizgal and Karplus [30] the temperatures
of components A and B

Thus we have

3. The perturbation solution of the Boltzmann equation for early
stages of slow chemical reaction

For early stages of chemical reaction we can assume that

and write
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where Iel and Ire denote the integrals connected with elastic and reactive collisions,
respectively. Equation (8) can be solved by the perturbation method suggested by
Prigogine ass coworkers [1]. In this method the term due to chemical reaction Ire
is treated as a small perturbation. If we assume

where ANT) is the Maxwell—Boltzmann distribution function with the total tem-
perature T for the system (see Eq. (6))

whereas EGA and f5 ) are connected with nonequilibrium effects.
We can write Eq. (8) as

where

According to the perturbation method we introduce

where

where fA(0)ass A1-)are defined by Eqs. (9) and (10). Let us observe that while
writing Eqs. (8) and (9) we have not neglected the second term in Eq. (6). This
means that in the isolated system it is possible to have the situation in which

Taking into account the form of Eq. (8) we can write
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where

Assuming that the system considered is thermally isolated we can put

From Eq. (21) it does not follow that the temperatures of components A and B
defined by Eq. (5) have to be constant. As n is constant Eq. (21) leads to the
conclusion that

Equation (14) is solved by using the expansion of 9 „A in the Sonine polynomials

where

from the condition

it follows that

As shown by Shizgal and Karplus [30], after taking into account Eqs. (5), (9), (23)
ass formal properties of the Sonine polynomiads, it can be written

We have introduced the indices SK to denote by TASK the Shizgal—Karplus tem-
perature.

Following our derivation from Eqs. (15), and (19)-(21) we can obtain

Let us observe that the coefficients α t̂ ) (see Eqs. (9) and (23)) appear in the
right hand side of Eq. (28) only (see Eqs. (17), (9), and (23)). Therefore, after
introducing into the right hand side of Eq. (28) the expansion of fn in the Sonine
polynomials (see Eqs. (17), (9) and (23)), multiplying this equation by the ap-
propriate Sonine polynomial and integrating with respect to dcA we get a linear
algebraic equation (if one Sonine polynomial is used) or a Set of linear algebraic
equations (if more Sonine polynomials are used). After introduction of an appro-
priate reactive cross-section we can solve such algebraic equations and obtain the
results for αA(i), i.e. to have the expressions for nonequilibrium velocity distribu-
tion functions (see Eqs. (9), (10) and (23)) from which all necessary macroscopic
quantities can be calculated. In the next section we present the results obtained
for the line-of-centers model.
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4. Analytical results for the line-of-centers model

The rate of chemical reaction (1) can be obtained by integration of Eq. (8)
with respect to cA. Taking into account the normalization and conservation of the
number of particles in elastic collisions we obtain

where

Equation (30) relates the phenomenological rate constant kA to the microscopic
reaction mechanism determined by σ*AA1. We will analyze the differences between

the nonequilibrium values of kA and the equilibrium values of kA (0). These rate
constants can be calculated as

and

We adapt the line-of-centers model due to Present [5]

where k is the unit vector in the line-of-centers of colliding molecules A modelled as
hard spheres with a diameter dA, sF is the steric factor accounting for the fact that
in order to have the reactive collisions it is necessary to have a peculiar orientation
of the colliding molecules, g* is the threshold relative velocity connected with the
threshold energy of the reaction (1) by the relation

where mA is the molecular mass. We introduce the reduced dimensionless threshold
energy ε*

Introducing for σ Ar the line-of-centers model (see Eq. (33)) we perform the
calculations described at the end of Sec. 3. For the coefficients aA (see Eqs. (9),
(10,), (23) and (24)) we obtain
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where

and symbols (1) and (1,2) in a^1 ) have been introduced to indicate the Sonine
polynomials used in Eq. (23).

The nonequilibrium effect dne to the chemical reaction (1) can be character-
ized by

Thus, for the line-of-centers model (see Eq. (33)) using Eqs. (31), (34) and (35)
we obtain

and from Eqs. (41), and (31)-(36) we get

whereas from Eqs. (41), (31)-(35) and (37)-(40) we obtain

In Eqs. (43) and (44), similarly as in Eqs. (36)-(38), we have introduced (i, j) to
denote the Sonine polynomials used in derivation. Additionally we introduce the
value of the rate constant calculated according to Eq. (42) in which we replace the
temperature T by the Shizgal-Karplus temperature Tr. Thus, we obtain

Equations (43), (44), (47) and (A8) are the main results of our theoretical treatment.
These results can be compared with the traditional theoretical results and with
the Monte Carlo computer simulations.
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5. Calculation of nonequilibrium effects of the chemical reaction with
the total neglecting of the products of this reaction

In this section after showing the fundamental differences between our treat-
ment and traditional treatments we present the formulas for obtained in the
traditional way, which are necessary for comparison with our, treatment.

The derivations presented in Secs. 3 and 4 have been performed with a
partial neglecting of products B of the reaction (1). The Boltzmann equation for
the reagent A (Eq. (2)) has been simplified by the neglecting of the third term
accounting for the elastic collisions between molecules A and B (see Eqs. (2) and
(8)). But the product B has been included in the definition of the total temperature
T of the system and in the equation of the energy balance (see Eq. (22)). In the
more traditional approach (see for example Refs. [1] and [5]) products B are totally
disregarded. It means that it is also assumed that

From Eqs. (8) and (49) after taking into account the conservation of energy it can
be shown that (see Refs. [1] and [5])

It means that in the expansion (23) not only the first term (see Eq. (26)) but
also the second term should be disregarded. Calculations of the nonequilibrium
effects under the assumption expressed by Eqs. (49) and (50) lead to the following
results. The expression derived by Present [5] with the use of the Sonine polynomial

S(2)1/2(C2A) s

whereas that obtained with the use of the Sonine polynomials S(2 )1/2(C2A) and

S(3) (C2 ) (see Refs. [6, 7]) is

Equation (52) is very convenient for comparison with our results because, as an-
alyzed by Shizgal and Karplus [7], the effect of introduction of further Sonine
polynomials is small.

6. The Monte Carlo numerical simulations

In this section we describe the numerical simulations which we use to obtain
the results for comparison with the results following from the analytical expres-
sions derived in Sec. 4. We apply the modified Nanbu—Babovsky Monte Carlo
simulations scheme, which we have already used and described for various cases of
translational energy relaxation in the dilute gas [20-22] as well as for chemical and
thermal effects in the bimolecular chemical reaction in the dilute gas [23]. Because
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we have already extensively discussed the modified Nanbu-Babovsky direct sim-
ulation scheme (see Refs. [20], [21] and [23]) we describe here only the parameters
introduced for the system.

We have used the following system for numerical simulations. A volume V =
1666.7 nm3 contains 500 spheres A and 0 spheres B having diameters dA = 0.35 nm
and masses mA = 16 g/mole. This corresponds to the packing fraction 0.0067348.
The equilibrium temperature is 300 K. In reactive collision spheres A change to
spheres B having diameters dB = 0.35 nm and masses mB = 16 g/mole. As
the chemical reaction proceeds the number of spheres A changes from NA = 500
to NA = 500 — NB and the number NB increases in time which is described
by time increment characterized by time steps Δt = 0.6941 x 10 -19 s. As in
the early stages of chemical reaction the fastest spheres A change to spheres B
the average translational energy of A and the temperature of the component A
decrease. In order to obtain a better accuracy we have performed in each simulation
a large number of runs R(R > 1000 for all cases and for very slow reactions even
R = 40000) and calculated the average values of NA, NB, TA and TB as well as
the numbers of elastic and reactive collisions as functions of time in time steps.
The temperature TB is simply related to TA because from Eq. (6) it follows that
NATA + NBTB = NT. We have performed simulations for various dimensionless
threshold energies ε* and steric faction 5F. Typical changes of NB and TA in time
are represented in Fig. 1.

From Fig. 1 it can be seen that the socalled quasi-stationary state for the
component A characterized in a form of a long plateau for TA in the ranges of small
NB can be obtained in the region of minimum of TA. It should be emphasized that
this region corresponds to small values of NB only for slow reactions, i.e. those
characterized by sufficiently large ε* or small sF. Therefore, comparison between
the numerical results and those obtained from the perturbation theory should lead
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to reasonable results for slow chemical reactions only. We treat the minimum of TA
as an approximation of the Shizgal-Karplus temperature TI KE (see Eqs. (27) and
(48)) and we calculate the nonequilibrium value of the rate of chemical reaction
(see Eqs. (29) and (30)) in the region of the above-mentioned plateau. The results
of h (see Eq. (41)) can be calculated from the values of the rate constant k obtained
from the simulations and those of k(0) obtained from Eq. (42).

7. Comparison of the new and traditional analytical results with the
results of numerical simulations

In this section we compare the results for the relative change of the rate
constant of chemical reaction represented by  (see Eq. (41)). As h is a linear
function of the steric factor 5F, we present in Fig. 2 /sF. as a function of the
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dimensionless threshold energy ε* (see Eqs. (33)—(35)). We compare our analytical
results (Eqs. (43) and (44)) with the traditional results (Eq. (52)) and with the
results from our simulations performed for various steric factors. For the numerical
results OF is a function of SF. In order not to introduce too many results we do
not present the curve obtained from Eq. (51) because this formula gives nearly
the same results as Eq. (52). The results obtained from Eq. (47) do not represent
a linear function of sF but they differ only slightly from those obtained from
Eq. (43). As these small differences are the largest for sF = 1, in Fig. 3 we present

(TASK) - n(1) as a function ofε*for sF= 1.It should be emphasized that for
smaller values of sF these differences between the results obtained from Eqs. (47)
and (43) are even smaller.

8. Discussion and conclusions

Results for the change of the rate constant of the chemical reaction (1)
due to nonequilibrium effects have been analyzed. It is shown that, although in
the perturbation solution of the Boltzmann equation for quasi-stationary state in
which nA » nB ass the concentration of products B can be neglected, even the
small amount of products can have two important effects: (I) on the average kinetic
energy of particles A and (II) on the rate constant of chemical reaction. The effect
(I) is connected with a temperature decrease resulting from the consumption of
the fastest (the most energetic) particles A in the chemical reaction. This effect
represented by the Shizgal—Karplus temperature T9" (see Eq. (48) and Fig. 1)
has been already analyzed and compared with the results from the Monte Carlo
simulations in our previous papers [23] and [27]. This effect cannot be compared
with the results from the old treatments described in Sec. 5, because in such
treatments TA is assumed to be constant and such an effect does not exist at all.
The effect (II) represented by  (see Eq. (41)) characterizing the relative change of
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the rate of chemical reaction due to nonequilibrium effects is completely different
in our analytical results (see Eqs. (43), (44) and (47)) and in the results obtained
from the traditional treatments (see Eqs. (51), and (52)).

The new analytical results for n (for 0 < ε* < 4) are not only much larger
than the old ones but also the shapes of the curves representing n as a function
of ε* are completely different (see Fig. 2). It is also interesting that the values
for the first approximation of  (see Eq. (43)) and that directly calculated from
the Shizgal–Karplus temperature (see Eqs. (47) and (48)) are nearly the same
(see Fig. 3). The new values of /sF are in reasonable agreement with the results

. obtained from the Monte Carlo simulations for sufficiently small values of the
steric factor, i.e. for the reactions slow enough to be described by the perturbation
method. That is Why this agreement is better for sF = 0.1 than for sF = 0.3333
(see Fig. 2). We have also performed computer simulations for fast reactions, e.g.
sF = 1 and 0 < ε* < 2.5. It is very interesting that even for these fast reactions
for which the perturbation theory should not work we obtained smaHer numerical
results than the analytical ones but with the same shapes of curves representing
/sF as a function of ε* as those following from our new results (Eqs. (43), (44)

ass (47)).
The results obtained in this paper have been confirmed by additional inves-

tigations [28] and [29]. The results (obtained in Minnesota University), based on
the solution of the set of differential equations [28], permitted to get results even
for sF as small as 0.01 and 0.001. The last results fully confirmed our perturbation
solution of the Boltzmann equation. The authors of Ref. [28] were successful not
only in the analysis of the role of neglecting of product concentration but also of
the effect of neglecting of the reverse reaction. In the meantime Gorecki devel-
oped a phenomenological kinetic theory [29] in which this anthor showed that if
sF → 0 the result for the Shizgal-Karplus temperature (see Eq. (48)) and for n(1)
(see Eq. (43)) should be exact. Naturally, the last treatment [29] is also a simpli-
fication because n(1) for 0 < ε* < 4, even for the slowest reactions, gives good
approximate results only. In this case a better approximation is obtained if more
Sonine polynomials are considered, i.e. n(1, 2) (Eq.(A4)) gives more exact results
than n(1) (Eq. (43)) and so on.

Just to summarize, in this paper we have presented analytical results from
the new perturbation solution of the Boltzmann equation for the dilute gas with
the chemical reaction A+A B+B and we have verified them by the Monte Carlo
computer simulations. The theory has been more carefully analyzed and the numer-
ical simulations have been more accurately performed than in the introductory ver-
sion presented in Swidno symposium in 1990 [23]. We have shown that in the iso-
lated gaseous systems the nonequilibrium effects predicted by the perturbation so-
lution of the Boltzmann equation for the chemical reaction A+A B+B with in-
clusion of the energy transfer from reagents A to products B (nT = nA TA+ nbTB)
differ significantly from such effects calculated with the total neglecting of the prod-
uct B (T = TA). We have obtained much larger effects for a relative change of the
rate constant of the chemical reaction ( /SF  45% for ε *  1.5) than in the tra-
ditional treatments assuming TA = T and giving the maximum effect ( /sF  8%
for ε*  5). These different maximum results are obtained in completely different
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ranges of ε*, e.g. in old treatments for ε * 1.5 it was /sF < 1%. We have also
confirmed that introduction of the Shizgal—Karplus temperature is very convenient
for the analysis of the nonequilibrium effects in such systems.

This paper cited as Ref. [13] in the recent paper [28] has been prepared with
a delay because of the unexpected death of Prof. J. Popielawski.
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