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The paper is devoted to the investigation of the single-electron excita-
tion spectrum, effective exchange interaction and dielectric susceptibifity of
the Muller model for high-temperature superconductivity. It is shown that
the interaction with the anharmonic vibration mode leads to the additional
splitting of the electron bands and their narrowing. The sign of the echective
exchange interaction between electrons depends on the local state of the vi-
bration subsystem. The electron and pseudospin (lattice) contributions to
the transverse dielectric susceptibility are investigated.
PACS numbers: 74.65.+n, 71.45.Gm

1. Introduction

A problem of high-temperature superconductivity (HTSC) is of major im-
portance in contemporary solid state physics. Substantial attention has been re-
cently paid to the study of theoretical models in view of the search for possible
mechanisms of HTSC phenomena. These models are developed in the spirit of
a Hubbard model, which describes strong electron correlations on a single site
of a crystal lattice, ass are supplemented by making allowance for peculiarities
of either electron states or lattice dynamics for the crystals under consideration.
Among these, one can consider the model for which the Hubbard Hamiltonian is
supplemented by the interaction of electrons with a lattice vibration mode, which
is characterized by essential local anharmonicity. The vibrations of apex oxygen
(Ow) in the copper-oxide superconduction possess such a property [1]. In partic-
ular, the presence of two Cu-O(4) distances follows from the analysis of EXAFS
spectra for YBaCuO [2] manifesting the double potential well. This conclusion
agrees with the experiments on the diffraction of X-rays [3]. An important role of
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the apex oxygen in the phase transition into superconductivity has been already
mentioned [4, 5]. The correlation between the oxygen energy spectum and Tc was
obtained [6]. The authors of Ref. [7] argue that the motion of O(4) atoms normal
to the CuO2 plane is characterized by strong fluctuations of charge along c-axis
and electron (hole) transfer between these planes and chains of CuO. It was shown
in [8, 9] that the interaction of electrons and local anharmonic vibrations can lead
to the superconductivity.

In addition, the coexistence of HTSC phenomena (in particular, in YBaCuO)
with ferro or antiferroelectric ordering in the discussion of possible HTSC mecha-
nism was questioned [10]. The role of instability of O 2- oxygen ion in this problem
was noted by Bussman-Holder, Simon and Buttner [11]. On this basis Muller et
al. [12] have investigated the dielectric anomalies in the vicinity of Tc ass possible
instabilities due to violation of charge symmetry including the apex Ow atoms.
It was shown that high value of dielectric susceptibility occur in YBaCuO com-
pounds [13, 14]. Besides, the symmetry loss with respect to the inversion at T <Tc
was discussed. The data of piezoresistance ass piezoelectricity measurements, ob-
servations of anomalies of ferro or antiferroelectric type (see also [12]) prove the
importance of the detailed study of dielectric properties of HTSC systems.

In order to describe anharmonic vibrations in case of the local potential
with two minima separated by a high barrier, the pseudospin formalism can be
applied (see [8, 9]). Within this approximation the model [15], which allows for
the interaction of electrons with local vibrations of ions (these are characterized
by pseudospin variables Śi , S; = ±1/2) in the same cell

was studied. Here gni determines the change of electron state energy on the i-th
site when oxygen transfers from the first to the second minimum. The total Hamil-
tonian of the model (it is also called the Muller model) contains the term .Ω ∑i S; ,
which describes tunneling decoupling of two lower vibrational levels of oxygen be-
sides Eq. (1.1). The electron subsystem is given here by the Hubbard Hamiltonian.
The similar Hamiltonian can be obtained in an excitonic mechanism [7]. It was
also proposed [16] for the description of the propagation of the holes through a
lattice of anions with filled shells.

This model has been mostly studied using the canonical transformation
which allows one to exclude the interaction with local anharmonic vibrations pro-
viding the Hamiltonian with effective electron-electron interaction. The Cluster
calculations [16] and Monte-Carlo simulations [17] have been also done.

A strong electron correlation on the single site leads to the splitting of elec-
tron spectum into two subbands in the Hubbard model. Mutual influence of both
subbands can be estimated within perturbation theory by the parameter t/U (t
is the transfer integral and U is the energy of electron repulsion on the single
site). Considering the lower subband, this leads to the effective Hamiltonian of
the socalled t—J model, where the influence of the upper subband appears as the
exchange interelectron interaction Jij(0) = —21 2ij/U, which is antiferromagnetic for
U > 0. The t-J model was widely used recently for studies of Cu-O layers elec-
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tron spectum in HTSC ass its peculiarities in the presence of antiferromagnetic
exchange [18]. The transition into the HTSC state can also be described within
the t-J model [19].

In this paper our purpose is to study the spectrum of single-electron excita-
tions at different electron concentrations ass investigate the effective interelectron
exchange interaction for the Muller model. Possible peculiarities of the electron ex-
change due to the presence and influence of the pseudospin subsystem (anharmonic
lattice vibrations) will be considered. We shall allow for complicated character of
single-electron spectrum, which differs from the Hubbard model by a larger num-
ber of subbands [20]. We have calculated transverse dielectric susceptibility on the
basis of the Muller model applied for the system with two sublattices (containing,
for instance, two CuO planes in the cell with opposite signs of asymmetry parame-
ters for single-site potentials). The contribution into the static susceptibility from
the electron ass vibration (pseudospin) subsystem is included. The calculations
were done in regimes with the constant electron concentration (n = const) and
constant value of chemical potential (μ = const), which provide a possibility to
extract contributions due to the charge transfer effect from or to the plane.

2. The Hamiltonian

The Muller model [15] represents the anharmonic vibrations of the apex oxy-
gen in an environment, where the electronic states of the CuO-planes are described
by the Hubbard model, which allows for the strong electron correlations at a single
site. The Hamiltonian of the model has the following form:

where the single-site Hamiltonian Hi describes the interaction of the CuO-plane
electrons with the local anharmonic vibrations; Hi is furthermore described in
terms of pseudospin variables

ni, = α+iσαiσ is the o-spin electron number operator, gni describes the change
in energy of an i-site electron due to an oxygen transition from one minimum
(Sz = +1/2) of the anharmonic potential to another one (Sz = —1/2). The mag-
nitude of the g parameter is of the order of the single-site interelectron Coulomb
repulsion U due to the strong oxygen polarizability of the CuO-planes. The last
two terms in Eq. (2.2) describe the tunneling splitting of the vibrational mode and
the asymmetry of the anharmonic potential. For the reasonable description of the
physics of apex oxygen anharmonic vibrations, the case .fl < W (W is the halfwidth
of a nonperturbed electron band) should be considered. For the purposes of the
model analysis developed in the present paper, it is advisable to discuss different
possible options (including Si > W) in order to clarify the feasibility of the model
and the role of particular parameters. The case .fl > W was studied in Ref. [17],
where the transition to a superconducting state was investigated with the help
of Monte-Carlo simulation (possible numeric values of parameters are discussed
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there as well; see also [16, 21]). We shall consider the wide range of asymmetry
parameter h.

In the case of narrow bands (t « U) ass the absence of a pseudospin in-
teraction, the single-site Hamiltonian (2.2) plays a role of a basic approximation.
This suggests the following single-site basis of states |R) = | ni ↑, ni↓, Siz), which
consists of eight state vectors

It is useful to introduce the Hubbard operation XRS = |R)(S| that act in the space
spanned by the state vectors (2.3)

Thus, we get the Hamiltonian Hi in terms of the Hubbard operation

It is diagonal for Ω = O (i.e. no tunneling splitting of the vibrational states). For
Ω ≠ O on the other hand, the transformation

with

where n1 = 0, n2 = 2, n3 = n4 = 1 (n r = n;.), reduces (2.5) to a diagonal form
and results in the Hamiltonian [20]

with
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and

where Xmn = |m)(n| and

3. Green's functions.

We calculate single-electron Green's functions from the equations of motion
with the decoupling of high-order Green's functions in the spirit of the Hubbard-I
approximation [22]

After simple transformations we find Green's functions

ass

where t q is the Fourier transform of the transfer (hopping) term. The coupling to
the apex oxygen is included by

which is Green's function (3.3) for zero transfer. (The v-sum goes over all single-elec-
tron transitions.) The Hubbard-I approximation is available for narrow bands
(| t q | K U for the Hubbard model, or | t q | « | ε v - ελ | (v λ) for the considered
model).

The spectrum of the single-electron transitions εv (t q) is, in turn, determined
by zeros of Green's function (3.3) denominator. Equation (3.4) considers the ho-
mogeneous case, ((X") does not depend on the site number). We shall discuss
the paramagnetic state (n ↓= n↑= n/2, (X44) = (X33), (X44) = (X33) and
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g↑(ε) = g↓(ε) = g(ε)). The spectral theorem allows one to calculate the mean
values

with

where µ is the chemical potential. The system of Eqs. (3.5) has to be completed
by the normalization condition ∑r Xrr, = 1 ass by an equation for the chemical
potential

Further analytical calculations cannot be performed and we have to turn to
numerical investigations. To do this, the q-summation in Eqs. (3.6) is changed to an
integration over the rectangular density of states: p(l) = 1/(2W) for -W < t < W
and p(t) = O otherwise. Equations from (3.4) to (3.7) define a Self-consistent set,
which allows one to calculate the spectrum of the single electron transitions ass
the mean values (Xrr) [20].

Only in case of the zero electron transfer (l q = 0) the integrals (3.6) can be
performed analytically and we get the Boltzmann distribution for the mean values
(E0 = -μ)

An equation for the chemical potential μ results from a substitution of (3.8)
into (3.7). A solution of this equation in the limit β →∞ shows that the result
depends on the sign of an effective potential

We get for positive values of Uerf :

For negative values Ueff, on the other hand, we obtain

These solutions can also be obtained from the common Hubbard model for
t q = O and for U > 0 (repulsion) or U < 0 (attraction), respectively. Thus, (Jeff
is evidently the effective single-site electron—electron interaction of the electrons
when an additional interaction of the electrons with the pseudospins is present
(see [3]).
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4. Independent subbands approximation

In the first step we consider the case when the contribution of the transfer
term is much smaller than the difference between two single-electron transition
energies, i.e. |t q | <G |εv - ελ | for v λ. Starting from Eqs. (3.5) and (3.6) we
obtain

The single-electron transition levels

with v = (r, s) = {(41), (41), (41), (41), (23), (23), (23), (23)} broaden into the
bands (4.1) having a width of the order of 2W Bv.

Figure 1a presents the energies of the single-electron bands in the inde-
pendent subbands approximation as functions of h. The interaction with the an-
harmonic (pseudospin) mode splits each energy level of the common Hubbard
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model (0, E0 and 2E0 + U) into two sublevels (3.9) (vibronic states) and, as the
result, each Hubbard single-electron band splits into four subbands: (41), (41),
(41), (41) and (23), (23), (23), (23). The subbands (41) and (23) correspond to the
single-electron transitions between the lower vibronic states and all the other
include the excited vibronic states H. The widths and statistical weights of the
subbands are determined by the parameters (Aσs) 2 = {cos 2 (ϕr— ϕs), sin2(ϕr-ϕs)}
(Fig. 1b) and by the average occupancies of the states (X" +X"). Hence, there
are such values of g ass h (0 < h < g for (41) and g < h < 2g for (23)) for which
the subbands created by the lower vibronic states are strongly narrowed simulta-
neously with the broadening of the subbands formed by the excited states.

Figure 2 shows how the spectrum, the chemical potential and the mean values
of the Hubbard operation (X") depend on the charge carrier concentration n.
Obviously, the main effect comes from the 1 -> 4 and 3 --> 2 transitions with μ
fixed within these bands.

The band interactions become important if the bands are not widely sepa-
rated. This is observed for the following situations:

a) Small effective interactions (Ueff ≈ W) when the bands (41) and (23)
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become close or overlap;
b) Small tunneling frequencies (.fl < W) when the bands (41)-(41), (23)—(23)

and (41)—(41), (23)—(23) become near or overlap (see Fig. 1a) for h 0, 2g, and
g, respectively. If the value of asymmetry parameter h is far from these points we
can neglect the interaction between such bands for all values of .fl (not only for
fl > W); in these cases the bass structure for Ω< W does not differ radically
from that for Ω > W;

c) Effective attractions ((Jeff < 0) when the chemical potential cannot be
determined within independent subband approximation.

If the tunneling splitting .fl of the vibrational energy levels is less than the
half of the electron band width W and the asymmetry parameter h is close to the
above-mentioned values (case (b)), the chemical potential can also fix within (ri)
or (Fs) bands (which were splitted off the (H) band by the energy of the order
of .fl) for some values of the electron concentration. This case as well as the one
of effective attraction (c) is discussed in details in [20].

5. Approximation for two near subbands (41) and (23)

The (ii) and (23) subbass interaction is treated taking the following terms
in Eq. (3.4) for g(ε) into account:

with

There are no couplings with the subbands formed by the excited states for
|εv — ελ > W, 1/β (v ≠λ) and we can put

Solving (3.5) results in the spectrum

We can also calculate the integrals (3.6) which give now

with
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where we set E0 = 0. The other subbands are treated in the independent subbands
approximation.

Such an approximation is similar to that which is usually used for the Hub-
bard model with an effective Coulomb repulsion (3.9) and with the hopping inte-
grals

which results from the bands "narrowing" due to the interaction with an anhar-
monic mode (see c.f. [3]).

We substitute (5.2) into (5.6) and calculate the mean values of the Hubbard
operators. The equation for chemical potential has the form

Our results differ from the Hubbard model mainly in the faction of
cos 2 (φ4 - q51) ass cos 2 (¢2 - ¢3) which characterize the narrowing of the sub-
basss. In the limit g = 0 (i.e. no interaction with the pseudospin) cos 2(φ4 — φ1) =
cos 2 (¢2 — φ3) = 1 and B41+ .855 = 1 which makes the right hass side of Eq. (5.8)
equal to zero.

The results for positive values of Ueff are qualitatively identical to those of the
Hubbard model. The only difference consists of the jump of the chemical potential
from the lower to the upper band which occurs now for n0 ≠ 1. Therefore, at
half-filling (n = 1) we have the hole conductivity for cos 2 (φ 4 — φ1) < cos 2 (φ 2 — φ3)
and electron conductivity on the opposite which comes from the effective "band
narrowing" in the presence of the interaction with anharmonic modes. For small
band widths (W «Ueff) n0 is determined from

and we find out that the interaction with the pseudospin destroys the electron—hole
symmetry.

6. Effective exchange interaction

In the Hubbard model the interband coupling can be considered using the
perturbation theory in parameter t/U. For lower Hubbard band it leads to the
effective Hamiltonian of the socalled t —J model, where the influence of the upper
band manifests itself as the effective electron-electron exchange interaction Jijeff =
-2t /U, which is antiferromagnetic for U > 0.

The hopping term of the Hamiltonian (2.1) can be rewritten in the form
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Now the total Hamiltonian has the form

Similarly to the standard transition from the Hubbard model to the t-J one,
we perform the canonical transformation in the form [23-251

where the generator S = S+ is determined from the condition

As the result, the total Hamiltonian (6.3) with accuracy up to the second order in
H' has the form

We look for the generator S in the form

From a substitution of (6.7) into (6.5) we fmd

It is clear that such perturbation theory is only correct when the hopping integral
is much smaller than the distance between the single-electron transition levels
(| tij | «|εpq- εrs |). By substitution of (6.7) with (6.8) into (6.6) we obtain the
expression which contains three-site indices and there are the cases when two of
them can coincide. Taking into account such terms we find

This expression describes the effective interaction in the second order in t. In
Eq. (6.9) there are terms correspossing to the effective exchange. In the approx-
imation resulting in the Hamiltonian of the t -J model, these terms become the
leading ones.

Introducing the pseudospin operation Sz, S+ and S' similar to (2.4), but
acting in the space spanned by the eigenstates of the single-site Hamiltonian (2.2),
the exchange part of (6.9) can be written in the form [26]
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The expression in braces is the effective electron-electron exchange integral
for the Muller model. This integral now depends on pseudospin operators, in con-
trast to the t-J model case where the effective exchange is constant J ^ = —2t j /U.
The values and the signs of the coefficients Jijαβ are determined by the denomi-
nation εpq - εrs and, in particular, by the effective single-site electron—electron
interaction Ueff (3.9)
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and all other are equal to zero.
The total effective exchange integral contains components J ł , Jij -, which

describe the exchange interaction when the pseudospins in neighbouring sites are
in fixed states (St = 1/2 or -1/2) and components J  ij↑↑, Jij↑↓,Jij+↑, etc. which
describe more complicated effects when the electron exchange is accompanied by
the pseudospin flipping (for Ω 0).

Figure 3ab presents exchange constants Jij-- and Jij+ — defined by the formu-
las (6.11) vs. tunneling energy O. The exchange constants diverge and change the
sign when the values of correspossing denomination in (6.11) ((J e ff = ε2+ε1—ε3-ε4
for Jij- — and ε2+ ε1,1— ε3  — ε4 for 42: — ) cross zero value. Nevertheless, as it was
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mentioned above, the perturbation theory expansion (6.6) and, next, the expres-
sions (6.10)-(6.12) are correct only when |tis | K |εpq — εrs | and cannot apply when
the energy denomination are smaller than the hopping term tu.

In Fig. 3a the regions with the antiferromagnetic exchange interaction
Jij -<0 correspond to the positive values of the effective interaction (Jeff > 0.
In the intermediate region Ueff< 0 and the effective exchange is ferromagnetic,

> 0, but it does not lead to the ferromagnetic ordering because in this
case the homopolarity is broken, electrons couple into pairs (see Eq. (3.12)) and
(σiz) = (ni↑ - ni↓)/2 —> 0.

On the other hand, the value and the sign of the exchange constant J -
are not determined by Ueff but by the denominators ε.; + ε l i — ε3 - εa and the
exchange interaction between the sites with opposite directions of pseudospins can
possess either antiferromagnetic or ferromagnetic character due to the sign of the
denominator.

The total exchange interaction is determined by the state of the pseudospin
subsystem. If the crystal is in the equilibrium state, then at low temperatures
(S;) = (-1/2)((P+) = 0, (P- ) = 1) and Jij - produces the main contribution to
the total exchange.

When vibrational subsystem is nonequilibrium (e.g. in frozen disorder state,
which can be realized in HTSC materials with nonstoichiometry in oxygen) the
number of sites with the St = +1/2 values of the pseudospins increases and .

and J + give the contribution to the total exchange. Now, theexchange
interaction between the different sites has different values and signs depending on
the distribution of the pseudospins in the lattice. This situation can correspond to
the frustration of the exchange interaction discussed in some papers [27, 28].

7. Dielectric properties of the model

In order to investigate dielectric properties of the system which is described
by the Muller model, let us introduce into the Hamiltonian the interaction energy
with the external field El

where ΔPiz is the variable part of the transverse (i.e. normal to the CuO layer)
component of the polarization vector

Here ds is the dipole moment connected with the pseudospin turning (transition
of the oxygen atom from one minimum of the double well potential to the other
one); de is the dipole moment corresponding to the electron charge transfer from
(or to) the layer of CuO). We do not include into the Hamiltonian the states
to which the electron transitions from the layers of CuO are possible (these are,
first of all, electron levels of the CuO chains). It is supposed that in case of the
thermodynamic equilibrium there exists a reservoir of electrons which determines
the chemical potential level in the layer.
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Calculating the dielectric susceptibility

where υc is the volume of a primitive cell, we will consider both situations, when
,u = const and when n = const. It will give us the possibility to investigate the po-
larization in case of absence of the electron charge transfer in the normal direction
to the layer.

This problem can be easily generalized to the case of the crystal with two
sublattices (two layers of CuO in the primitive cell, as in the YBaCuO crystal).
Because of the fact that the lattice is centrosymmetric, the layers differ in the signs
of the dipole moment

That is why the contributions from the layers are mutually compensated in the
total spontaneous polarization (ΔPzi(1 ) + ΔPzi(2 ) = 0) and are summed in the

• susceptibility

If one does not take into account the interaction between different layers, it
is possible to consider the problem about transverse polarization of one layer. In
this case

for μ = const, and

for n = const.
We find the average values of (Si) and (ni) in the presence of the fleld El in

the approximation, which corresponds to that applied in Secs. 2-6 with the help
of the following relations

The results obtained there can be directly used if one takes into account the fact
that the consideration of interaction with the external fleld leads formally to the
substitutions of variables

The mean values (Si) and (ni) as functions of E1 as well as the derivations

were obtained by means of numerical calcula-

rtions. 	 r
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In case of n = const the average occupancies of states (Xrr) weakly depend
on the field and the main contribution into susceptibility gives the pseudospin
subsystem, then

The expression (7.10) contains three terms (n r = 0, 2 and 1), each of them de-
scribing the susceptibility of a single spin is placed in the transverse fleld ,fl and
longitudinal field (h — nrg). The possible peak of susceptibility at h = nrg corre-
sponds to each of these terms; the weight of each peak is determined by the values
(Xrr - Xrr) Figure 4a illustrates situations which take place in regimes n = 1

and n < 1. There is one peak for n = 1 at h = g; with a decrease in n a peak
at h = O appears and increases, whereas the intensity of the first peak decreases.
Positions of the peaks correlate with the behaviour of the parameter (Sz) with a
change of h (Fig. 4b) and correspond to the values of asymmetry parameter for
which the character of occupancies of double-well minima changes.
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Whereas at n = const the chemical potential is always in one of the subbands
(or between them), in the regime µ = const it becomes possible that the chemical
potential goes out from (or enters into) the permitted energies band.

It follows from the above calculations that when the chemical potential is
outside the bands (41) ass (23), the concentration n of electrons in layer is almost
constant and equals 2 when the chemical potential is higher than the band (23),
n = 1 (most exactly n = n 0 ) when it is between bands and n = 0 if it is lower
than the band (41). The total susceptibility in these cases is determined by the
formula (7.10) as well.

If the chemical potential moves inside the band with the change of the fleld,
then the electron concentration (average occupancy of states) in layer changes (see
Fig. 5a,b). In this case the contribution of the electron subsystem into the suscep-
tibility appears. The character of this contribution depends on the relation of the
signs of parameters ds and de (see Fig. 5c,d). Besides, the additional contributions
in the pseudospin component of susceptibility xi appear. These contributions are
caused by the change of average occupancies (X") influenced by the fleld. The
latter leads to an increase in x s┴for the opposite signs of dsand deand to de-
crease in x s┴for the same signs. It is caused by the fact that the change of the
electron concentration in the layer influenced by the external electric fleld leads
to the change of the effective fleld acting on the pseudospin by the value of g for
each additional electron at a site.

Such a physical picture remains also in the case when the chemical potential
is in the permitted band only for the certain interval of h values (Fig. 6a,b).
Namely the great values of the susceptibility x ┴totalcorrespond to this interval,
while outside of this interval the susceptibility is small (Fig. 6c,d).

The obtained results testify to the conclusion that certain intervals of double-
-well asymmetry parameter h correspond to the essential increase in the transverse
(i.e. normal to the layers) dielectric susceptibility . The ratio of contributions of
pseudospin ass electron components depends, first of all, on the relation between
ds and de . The situation in YBaCuO crystal corresponds to the case when ds and de

have the same signs (which is connected with the increase in electron level energy
in the layer when the apex oxygen is located in Sz = +1/2 position, that is, closer
to the layer). By the order of magnitude d s = Z(OA) δ, de = eD, where Z(OA)
is the effective charge of Ow oxygen, δ is the distance between the double-well
minima, and D is the effective length corresponding to the transfer of the electron
charge from CuO chains to the layers.

The pseudospin (lattice) component of the susceptibility (7.10) reaches the
value of the order of X s ^- d2s/(vc.Ω)at its maximum. As for the electron com-
ponent Xe , it can be evaluated as Xe = d2e/(vcW) (here W is the subband width
renormalized due to the narrowing effect), if the leading contribution

is extracted. Hence, the estimate Xe/xs 	(d2e/d2e)(Ω/W) follows. Because
δ « D (δ = 10'1 Å [5], D = 5 ¸ 7 Å), xe » xs for Ω < W. Direct numeri-
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cal estimation gives X e 	10 1  10 2 , which can match to the large observed εzz

permeability values [13, 14] and testifies to the existing tendency to the dielectric
instability.

8. Conclusion

Thus, we have shown that the single-electron spectrum of the Muller model
displays a more complicated stucture than that of the Hubbard model. The inter-
action of electrons with the anharmonic vibration mode leads to the existence of ex-
tra subbasss and causes their additional narrowing. The violation of electron-hole
symmetry takes place. The effective exchange between electrons depends on the
state of the vibrational subsystem and may possess both antiferro and ferromag-
netic character. This could be one of the reasons for the frustration of the exchange
interaction. The electron contribution to the transverse dielectric susceptibility of
the model, arising from the electron charge transfer from/to CuO layer, can be of
a significant magnitude leading to the high values of the static dielectric suscepti-
bility.

References

[1] R.E. Cohen, W.E. Pickett, H. Krakauer, Phys Rev. Lett. 64, 2575 (1990).
[2] H. Maruyama, T. Ishii, N. Bamba, H. Maeda, A. Koizumi, Y. Yoshikawa, H. Ya-

mazaki, Physica C 160, 524 (1989).
[3] S.D. Conradson, I.D. Raistrick, Science 243, 1340 (1989).
[4] G.H. Kwei, A.C. Larson , W.L. Hults, G.L. Smith, Physica C 169, 217 (1990).
[5] S.D. Conradson, I.D. Raistrick, A.R. Bishop, Sciencc 248, 1394 (1990).
[6] Y. Ohta, T. Tohyama, S. Maekawa, Physica C 166, 385 (1990).
[7] A.R. Bishop, R.L. Martin, K.A. Muller, Z. Tesanovic, Z. Phys. B, Condens. Matter

76, 17 (1989).
[8] N.M. Plakida, Phys. Scri. 29, 77 (1989).
[9] N.M. Plakida, V.L. Aksenov, S.L. Drechsler, Europhys. Lett. 4, 1309 (1989).

[10] S.K. Kurtz, J.R. Hardy, J.W. Flocken, Ferroelectrics 87, 29 (1988).
[11] A. Bussman-Holder, A. Simon, H . Buttner, Phys. Rev. B 39, 207 (1989).
[12] V. Muller, C. Hucho, D. Maurer, Ferroelectrics 130, 45 (1992).
[13] F.M. Muller, S.P. Chen, M.L. Prueitt, J.F. Smith, J.L. Smith, D. Wohlleben, Phys.

Rev. B 37, 5837 (1988).
[14] L.R. Testardi, W.G. Moulton, H. Matias, H.K. Ng, C.M. Rey, Phys. Rev. B 37,

2324 (1988).
[15] K.A. Muller, Phase Transitions (special issue) (1988).
[16] J.E. Hirsch, S. Tang, Phys. Rev. B 40, 2179 (1989).
[17] M. Frick, W. von der Linden, I. Morgenstern, H. Raedt, Z. Phys. B, Condens.

Matter 81, 327 (1990).
[18] Yu.A. Izyumov, Sov. Phys.-Usp. 161, 1 (1991).
[19] P.W. Anderson, G. Baskaran, Z. Zou, Phys. Rev. Lctt. 58, 2790 (1987).



Dielectric Properties and Electron Spectrum ... 313

[20] I.V. Stasyuk, A.M. Shvaika, Preprint Inst. Cond. Matt. Phys. Ukr. Acad. Sci.,
ICMP-91-56P, Lviv 1991; I.V. Stasyuk, A.M. Shvaika, E. Schachinger, Physica C
(in press).

[21] N.M. Plakida, V.S. Udovenko, Mod. Phys. Lett. B 6, 541 (1992).
[22] J. Hubbard, Proc. R. Soc. Load. A 276, 238 (1963).
[23] A.V. Harris, R.V. Lange, Phys. Rev. 157, 295 (1967).
[24] J.E. Hirsch,Phys. Rev. Lett.54,1317 (1985).
[25] L.D. Didukh, I.V. Stasyuk, Ukr. Fiz. Zh. 13, 899 (1968).
[26] I.V. Stasyuk, A.M. Shvaika, Preprint Inst. Cond. Matt. Phys. Ukr. Acad. Sci.,

ICMP-92-15P, Lviv 1992.
[27] Lu. Y. Patton, J. Phys., Condens. Matter 2, 9423 (1990).
[28] D.N. Aristov, S.V. Maleyev, Z. Phys. B 81, 433 (1990).


