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We discuss some of the recently proposed models dealing with the super-
conducting state in the presence of strong antiferromagnetic fluctuations, in-
duced by the on-site Coulomb repulsion between electrons (the Hubbard cor-
relation). In the weak coupling limit we treat the influence of correlation ef-
fects on the phonon-mediated superconductivity within the BCS-Eliashberg
framework. As a non-standard model in this limit we describe next the
so-called spin bag model. To discuss strong correlation limit, we describe
first the projected Hamiltonian (the t-J Hamiltonian) and the correspond-
ing antiferromagnetic state. The resonating valence bond model is introduced
both as a naive version, equivalent to the BCS treatment of the transverse
spin fluctuations, as well as a holon-spinon version.
PACS numbers: 74.10.—z, 75.10.Lp, 75.50.Ee

1. The weak correlation limit

1.1. Outline of the antiferromagnetic state

Magnetically ordered states are due to the repulsion between electrons, mea-
sured by the on-site electron correlation energy U. We shall use the Hubbard

Hamiltonian for a single band in the site and reciprocal space representation

The local moment Si has components
In the antiferromagnetic (AF) state, the Fourier transform of S; i.e.

can be written

(101)
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For a Neel-type (up-down) of order, q = G/2 with G — a reciprocal lattice vector.
In the Hartree—Fock approximation the Hubbard Hamiltonian becomes

It can be diagonalized by introducing new operators by means of a Bogolyubov
transformation. If p is any k vector such that |k| < |G/2|, by substituting in (1.1.3)

we obtain the AF Hamiltonian in diagonal form

provided tan(2θpσ) = σUSzq/(εq  — εp+q). The AF quasi-particle energies for
materials exhibiting "perfect nesting" of the band structure, i.e. ep = —ε p+G/2
(also called the folding condition) are

Two AF subbands result, separated by a gap Δ = 2USzq. At the gap edges, the
AF density of states (DOS) has spikes diverging to infinity. The AF gap for a spin
density wave vector q = G/2 opens in the middle of the paramagnetic (PM) band
irrespective of n. The value of Szq (hence of the gap Δ= 2USzq) can be evaluated
explicitly for any band occupancy n in the case of a PM square DOS p, = 1/W,
yielding

while for the square bidimensional lattice one has the implicit equation

In the relation above, EL and εF(n) are respectively the lower band edge and
the Fermi level in the PM state. In both cases Sy decreases quickly with W/U
and 1 — n. By comparing the above equations, one sees that the sensitivity of
S9 to variations of W/U and the filling n is smaller for the square lattice DOS,
characterized by the van Hove singularity.

1.2. Phononic superconductivity in a weakly correlated AF background

This topic would require a rather detailed analysis which we cannot do here.
For a very detailed discussion, see [1]. We shall instead briefly point out the main
problems in the framework of the standard models of phonon-assisted supercon-
ductivity (SC).

According to the BCS theory [2] the expression of Tc assuming a model DOS
appropriate to free electrons in three dimensions is
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where AD is the SC gap in the density of states, cop is the Debye frequency,
pN(EF) = pF is the DOS at the Fermi level in the state existing at T →Tc†(normal
state). V is the matrix element of the electron—phonon coupling responsible for the
pairing of the electrons, which BCS assumed to be isotropic on the Fermi surface
for convenience. In general, V = Vk q i.e. it depends on the wave vectors of the
electron (k) and of the phonon (q) involved. In that case, one must distinguish
between two gaps. One type of gap Δk separates states with the same k in the
upper (-1-) and lower (—) SC subbands

The other type of Kap An is the gap in the resulting SC density of states

This distinction is of great importance when one treats the effect of impurities
[2]. If not stated explicitly otherwise, we shall consider only the isotropic case
(s-wave coupling), where Δk is actually k-independent and the two gaps coincide

Δk=ΔD.
The BCS theory neglects the effect of correlation, and therefore it is not a

good starting point to deal with magnetic effects on the SC state, because, as we
have seen, magnetism is due to appreciable on-site repulsion effects. If the SC state
evolves from a PM state, correlation has two effects. The first one is to reduce the
strength of the electron—phonon coupling in a way approximately proportional to
the reduction in the cohesive energy [3]. The second effect affects the efficiency
of a given electron—phonon interaction in coupling the electrons. This effect is
described by the Eliashberg theory [4]. Therefore, one cannot write down a simple
expression for T, but one can find an approximate solution for the DOS gap [5, 6]:

The quantity p* pN(0) just defined is the effective Coulomb correlation, which
is strongly reduced with respect to the bare U whenever eF WD. The physical
process (usually termed "retardation effect") is the following. In metals where
U <W, one usually has ħωD « EF, implying that the transit time of the electrons
in any given lattice cell (Ted N h/EF) is much shorter than the ion vibration
period (τion N 2π/ωD ). Then the electron which triggers the vibration of a given
ion is already very far away when a second electron, passing close to the same
ion, feels the vibration and gets coupled to the first electron. In this way, the
effective repulsion between the coupled electrons is much reduced with respect to
U, which is defined as the instantaneous (unretarded) repulsion occurring when
both electrons are around the same ion In the present case, usually their relative
distance at the moment they get coupled, being υFτion , is much larger than a
lattice distance a ≈υFτel. Of course, if the Fermi energy is strongly reduced, or
the phonon vibration frequency strongly enhanced, this argument breaks down.

However, it turns out that even in that case, which invalidates the adia-
batic approximation and the Migdal theorem [4], the effective correlation is well
screened [7].
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When the correlation is strong enough that the normal state is not PM but
AF (or, at least, a PM state with long lived magnetic fluctuations of appreciable
amplitude which create islands of AF order extending over distances large in com-
parison to ki l ) one might argue that such a state has some features, connected
to the renormalized density of states, which might be favourable to singlet SC.
Indeed, we have seen that the AF DOS develops peaks close to the AF gap. By
consequence, when the filling is close to, but less than one, so that EF falls close
to the gap, pAF (EF) » pPM(EF) and an enhancement of Tc might be expected
[8, 9]. On the other side, the Coulomb interaction itself should be more efficiently
screened in the AF than in the PM state. Indeed, the Thomas—Fermi screening
length in the low-U limit goes as the inverse of the density of states at the Fermi
energy, being therefore larger in the PM than in the AF phases for n 1. This
reasoning, however, neglects the generally greater stability of the AF state with
respect to the singlet SC one because the AF gap goes as 2USzq N U, while the
phonon-assisted SC gap is smaller than ħωD « U. Of course, this argument de-
pends on the actual U/W and U/ħωD values, so that it has to be checked for a
given material.

A more relevant feature of the problem is that the interactions (e.g. on-site
correlation, electron—phonon etc.) present in the PM Hamiltonian have to be
re-expressed in terms of the quasi-particle operators appropriate to the normal
non-PM state (the spin density wave (SDW) state in this case) out of which the
SC state is assumed to develop. For instance, the electron—phonon interaction term
has in the PM state the expression [6]:

where v is the polarization index and the remaining notation is standard. The form
appropriate to study the possibility of the phonon-mediated SC state in a back-
ground with AF fluctuations is obtained from Eq. (1.2.6) by substituting to each
fermion operator αkσ either one of the AF operators Cpu or cp+G/2,σ according
to Eq. (1.1.4). The results [1, 10, 11] obtained by neglecting the dependence of
the coupling on the phonon wave vector q, indicate a decrease in the coupling for
singlet states due to the SDW background. However, a different conclusion (i.e.
that correlation enhances the electron—phonon interaction) is reached in [12] where
the q dependence was explicitly considered. The same conclusion was reached in
the strongly correlated case in [13]. A fully convincing treatment is still lacking,
but any conclusion about appreciably correlated systems reached by total neglect
of such effects on the interactions [14-16] are likely to be unreliable.

1.3. Non-phononic superconductivity in a weakly correlated AF background

Besides the electron—phonon interaction, also the correlation term itself has
to be expressed in terms of the AF quasi-particle operators. The consequences are
the core of the spin bag mechanism of SC proposed in the context of the high-Tc
superconductors by Schrieffer and co-workers [17].

Referring to the quoted papers for discussion of the experimental evidence
underlying the model, we shall recall its basic ideas only. The starting point is
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the observation that the SDW remains commensurate as holes are doped into
the material, implying that the AF subband structure is essentially rigid, so that
when n < 1 one has a metallic AF. Indeed, if the SDW pitch varied with n,
as soon as n < 1 it would become incommensurate with the lattice, and the
Fermi energy, for any n, would be pinned at the gap edge, keeping the material
in the insulating AF state. The holes are considered to be represented by wave
packets of size 1 « ξSDW , where ξSDW is the coherence length of the SDW, i.e. the
distance over which two spins keep an appreciable AF correlation. For a long-range
ordered AF state, ξSDW → ∞, while if the macroscopic magnetic state is PM, then
SDW can be Ń 10-10 2 lattice spacings (e.g. in La2-xSxrCuO4, the precise value

depending on x). This introduces a self-consistency requirement into the theory
for the superconducting coupling, because the calculated hole pairing potential
Vp must turn out to be large for a range óp of vectors of the reduced Brillouin
zone (RBZ) such that δp≈l-1. The condition over 1 implies that the AF band
structure around the position of the hole is well defined even in the presence of the
holes. Actually, Schrieffer and co-workers use the term SDW gap, stressing the
short-range order, and fluctuating, nature of the state they consider, instead of
AF gap, which refers to long-range and static order. We shall use the two names
interchangeably.

An intuitive picture of the pairing is the following: a hole depresses locally
the AF order in two ways. First, via exchange interaction, its spin pushes all
the surrounding Cue+ spins to assume the same spatial direction, producing a
ferromagnetic region. Notice that the fact that a moving hole carries a spin is a
distinctive feature of the low correlation limit. Indeed, in the opposite limit U > W,
as we shall see later on, the itineracy of the charge (hopping of a hole between
two neighbouring sites) has an energy cost of the order U/W, i.e. larger than the
itineracy of the spin (analogous, but not equal, to the creation of a spin wave)
whose cost is of the order J = W 2/U <U/W. In the large correlation limit one
has to distinguish between charge and spin motion, as we shall see. This first effect
is at the centre of the spin-polaron mechanism for non-degenerate bands discussed
in [18] which we cannot comment here. Notice that, under the same name of spin
polaron, a quite different mechanism, possible only if the many-band nature of the
electronic structure in high-Tc superconductors (HTCSC) materials is taken into
account, has been proposed [19]. The second effect depressing the AF order is that
the hole moves the Fermi level farther from the band edge, reducing the local Sq,
and, by consequence, the AF gap (see Eqs. (1.1.7) or (1.1.8)). At the same time,
the energy gain due to itineracy of the AF particle (^ EF (n) — EL) is reduced,
so that the hole tends to be trapped in the perturbed region: a spin bag has been
formed. It is now rather obvious that two such bags minimize their overall energy
by sticking together.

Notice that the effective potential keeping the holes inside the bags will now
have a range of the order 21 (because each hole is trapped everywhere inside the
two-bag region) which reduces the effective Coulomb repulsion between the holes.
The quantitative details of the model require rather lengthy calculations, which
are exposed quite clearly in the quoted literature.

We shall simply summarize the main steps. Looking back to Eq. (1.1.3) we
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see that the correlation term describes the coupling of PM electron states k and
k + q by USq . This interaction is written as appropriate to the ground state,
and therefore q = G/2. When excitations (i.e. spin waves) are present, the AF
moment will acquire small, fluctuating components of all wave vectors belonging
to the RBZ. The fluctuations affect both the amplitude and the orientation of the
local moment: the first ones (longitudinal fluctuations) change (S;), the other ones
(transverse fluctuations) develop non-vanishing (S=) or (Sr) components. There
will be also charge excitations, connected with electron hopping.

Schrieffer and co-workers [17] evaluate the different terms of the resulting
two-particle interaction in RPA approximation by using the AF operators to de-
scribe the fermions involved. They find that, if the holes occupy small pockets
near the top of the lower AF band (as it should be the case in the high-T c super-
conductors), then the only excitations effective in the coupling are the amplitude
fluctuations. They can now couple electrons of opposite spins (because they carry
one quantum of spin deviation) and of opposite moments (because they can carry a
wave vector spanning the whole RBZ), as required to form a Cooper pair of singlet
type. The coefficient of such terms, which is the hole pairing potential, turns out to
be negative. Therefore, the model yields a net attraction between the interacting
fermions, provided the hole doping is low. The pairing potential Vp(ω) depends on
energy (and wave vectors) and has two cut-off frequencies. One is the maximum
energy of the amplitude fluctuation itself, which turns out to be approximately
equal to the AF gap. The second cut-off is at ω = —Δ/2 — EF in our notation, i.e.
it corresponds to the Fermi energy for the holes, evaluated downward from the top
of the lower AF subband (i.e. from the gap edge). This follows from the impossi-
bility of exciting electrons above the AF gap edge. The physically relevant cut-off
is the lower between the two. A third cut-off refers to the moments, and it follows
from the above-mentioned self-consistency requirement, i.e. that the coupled-hole
wave packet in the real space has to be contained inside a distance not larger than
ξSDW • This is guaranteed provided the moment exchanged through the fluctuation
q≥ gmin = 0.5/ξSDW, which, in a free-electron-like formula, corresponds to a min-
imum energy ωmin = ħ2/2mξSDW . If we have very few holes, their Fermi energy
εF ≡ —(EU — EF) can be too small to satisfy this requirement.

To solve the difficulty one can heuristically associate to the holes an effective
mass m* > m so that Wm in = ħ2/2m*ξ2SDW < εF. This is a lower bound on the
coupling energy, which is expected to be greater than the Debye energy ħωD ≈ cqD
(c is the velocity of sound and q i) — the Debye wave vector), because the phonon
wavelengths λph > qD-1are generally larger thanCSDW.By consequence, the spin
bag model satisfies the general condition established in [20] for consistency of
any non-phononic coupling, which states that the relevant energy scale must be
larger than ħωD. It is important to notice that the on-site Coulomb repulsion is
not expected to have a large effect, due to the fact that the opposite spin holes
tend to live on different sublattices. This is a real space picture of the mentioned
effective screening of the U term in the Thomas—Fermi approximation. Indeed,
having n 1 puts the AF Fermi level close to the gap, i.e. where the DOS is
large and the screening length is small. By consequence (see Eq. (1.1.8)), if U/W
is not too small, one has fully developed staggered moment Sq N n/2 on the two
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sublattices, i.e. a situation close to the Neel order of localized moments. This is
tantamount to say that the "minority" carriers (i.e. those with the wrong spin
with respect to the sublattice on which they are) are very few. As the Coulomb
repulsion is felt only when opposite spin carriers come onto the same site, if such
events are very rare, the overall repulsion effect is small.

The SC gap turns out to be anisotropic in k space, and it has lines ,along
which it vanishes. however, this has no effects on the experimental quantities
which behave differently according to the existence, or absence, of a gap in the
DOS (a typical example being the specific heat below Te ), because even if the SC
gap vanishes for some k values, the AF gap does not. The basic difference between
the two gaps is that the one due to SC is tied to the Fermi surface, so that it may
depend on the filling, while the AF gap, being dictated by the symmetry of the
lattice and the pitch of the SDW, is independent of the filling, but for the case
where a variation of the latter makes it energetically favourable to change also the
former. The present model assumes that the SDW wavelength does not change
with filling, so that the AF gap is never vanishing and therefore the SC DOS will
always show a gap.

The order parameter (ci↑cj↓) can be evaluated explicitly, and one finds that
it changes sign for a rotation of r/2, similar to a d-wave pairing. Therefore, dia-
magnetic impurities can have a large negative effect, as in d-wave SC. The SC gap
at zero temperature ΔSC turns out to depend on the SDW gap cSDW according
to [17]:

where p(EF) is the AF DOS at the AF Fermi level, and VI mi. ≡ U * is the

effective pairing potential at the Fermi surface, which can be evaluated through

On the Fermi surface the last expression reads

The equations above show that the effective electron—electron interaction
U* R. — U. The relation 2ΔSC = 3.52kBTc holds. The critical temperatures pre-
dicted by the spin bag model according to Eq. (1.3.1) are evidently larger than
those typical of a classical phononic mechanism, as the relevant energy scale is

ΔSDWU >ħωD,as noted above. However, Eq. (1.3.1) isdifficult toreconcile
with the pressure dependence of Tc in the high-Tc superconductors. Indeed, a large
body of data [21] points to a generally positive effect of pressure on Tc , which is
difficult to understand on the basis of Eq. (1.3.1). The applied pressure is expected
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to decrease U/W, and by consequence also the DOS value and ΔSDW = 2USzq,
with the overall effect to depress Tc as given by Eq. (1.3 1). 'However, the increase
in eF due to the pressure has also a favourable effect as it reduces p* according
to (1.2.4), possibly overcompensating the reduction of U/W and finally resulting
in an enhancement of Tc . On the other side, already the starting assumption of
the spin bag model, i.e. that the regime U/W < 1 applies to such materials, is
questionable on the same experimental ground, as the Neel temperature TN in the
stoichiometric compounds increases with pressure [17], a fact which suggests that
the opposite limit U/W » 1 is realized at least for n = 1. One should however
mention that recent results on many-band Hamiltonian suggest the possibility of
accounting for the pressure data even in the moderately correlated limit [22].

2. The high-correlation limit

2.1. The projected Hamiltonian and the t-J Hamiltonian

There has been an enormous amount of interest in the properties of highly
correlated systems in connection both with heavy fermion and HTCSC materials.
The topics we shall discuss are a tiny sample of the wealth of models and techniques
which have been proposed in recent years. The physical problem is that of finding
a convenient way of describing the motion of the fermions (when the number of
electrons in the system is such that there is on the average no more than one
electron per lattice site) under the constraint that the same site cannot be shared
by two particles (obviously with opposite spins). A double occupancy would indeed
cost an energy U which, in this caSe, is by assumption larger than W, i.e. the
energy gained in allowing the particles to freely visit all the sites, only subjected
to the Pauli exclusion principle as fully delocalized fermions would do. In the large
correlation limit, then, the electrons will tend to avoid each other: either because
of the Pauli principle, if they have the same spin, or because of correlation, if the
spins are opposite. In the Hilbert space of the Hubbard Hamiltonian in the site
representation, where a state is identified by the occupation number of each lattice
site, the states with doubly occupied sites will be empty. In that limit if there is
exactly one electron per site (half-filled band case), no particle will be able to
move, and the electrical resistivity will be that of an insulator with a gap between
occupied and empty states of the order of U.

The theoretical problem is therefore to find a representation of the Hubbard
Hamiltonian in the subspace of states corresponding to configurations with only
empty, or singly occupied sites. We shall mainly deal with what is by now the
most popular Hamiltonian in this context, the so-called t-J model. It was first
introduced by Chao, Spalek, and Oleś [23] under the name of kinetic exchange
Hamiltonian and then rederived independently by Hirsch [24]. We can recall its
derivation from the Hubbard Hamiltonian only in a very sketchy way for lack of
space, so we refer the reader to the literature [23-25] for details.

For the physical reasons mentioned above, we shall divide the Hilbert space
of the Hubbard Hamiltonian into one subspace containing states with no doubly
occupied sites, and another one containing all the remaining states, respectively
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corresponding to the electron levels in the lower and upper Mott—Hubbard sub-
bands. For large U/W, a wide gap separates the subbands, and we expect that
the matrix elements of the Hubbard Hamiltonian connecting the subspaces will be
almost negligible. Then it should be possible to substitute to the original Hamil-
tonian another one resulting of two parts P0ΉP0 and PηΉPη each one acting
separately on one subspace η = Oand η≠0) and hopefully simpler to handle. We
cannot describe the procedure in detail for lack of space, and we refer the reader
to the original paper [23]. The final result is

where (ij) and (ijk) mean that the sites i, j and k ≠ i are nearest neighbours. The
three-sites processes give a contribution to the real hopping ≈ 1— n for 1— n « 1,
therefore, for the moment, we shall neglect them. We shall see in the last section
that they are connected with the resonating valence bond (RVB) model of high-Tc
materials.

We shall consider here only the case n < 1, because the case n > 1 can be re-
covered by an electron —ł hole transformation. Then we concentrate on Eq. (2.1.1),
referring to the subspace without double occupancies. We can check immediately
that, if n iσ +n i —σ = 1, i.e. for the half-filled band case, P0ΉP0 yields the Heisen-
berg Hamiltonian. Equation (2.1.1) can be written more compactly by introducing
new prσjected operators b Eα+i

σ

(1 —ni-

σ

) and vi

σ

 b abiσ = niσ(1—ni—σ). The
factor (1 — ni-σ) forces 191;, and via to be non-vanishing only within the subspace
of states with no double occupancy, because if on the site i there is a —a electron,
then 1 — ni-σ = 0, and operating with them yields zero. Then the first two lines
of Eq. (2.1.1) can be written as

The kinetic exchange Hamiltonian [23] of Eq. (2.1.3) has the appearance of the
Hamiltonian for an uncorrelated single band, where the correlation is hidden into
the use of the projected operators b a and via instead of the bare operators a a
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and n i,. Unfortunately, the b-operators are not true fermion operators, because
their commutation relations are

so that calculations with Eq. (2.1.3) are quite involved algebraically. We shall come
back to this problem in the section devoted to the RVB model. One way to get
rid of the inconvenient projected operators has been suggested by Spałek [26] in
the spirit of the variational approach pioneered by Gutzwiller [27]. It has led to
the mapping the Hubbard Hamiltonian in the large correlation limit U > W, via
the projected Hamiltonian of Eqs. (2.1.1-2) above, onto the following effective
Hamiltonian:

where we have introduced the probability of double occupancy of a given site by
opposite spin electrons η i ≡ (ni↑ni↓). It can be shown [26] that the expression of

in the PM phase, is 0(n) = 1— (1— f0) (1— 417/n2) 
2 where f0 ≡ (1- n)/(1— n/2).

One can show [26] that 17 vanishes above a critical value of the ratio between
correlation and bandwidth, whose evaluation depends on the shape of the DOS.
For the rectangular DOS Ucrit = 2W. When r7 = 0, it follows Φ —f f0. Then
the effective bandwidth of the system we = ΦW → f0W (1 — n)W, so that
the presence of holes in the system is needed to have metallic properties. Due
to the energy renormalization εk —> Φεk also the DOS is modified according to
p*σ (E = Φε)_ (1/0)p0 (6). When 0, then p* diverges, indicating that the band
reduces to a set of localized energy levels. At half-filling the bandwidth vanishes,
turning the system into an insulator. The t—J model is the limit for U » W
and n → 1 of the Heft of Eq. (2.1.5). Looking at Eq. (2.1.6) one notices that the
coefficient of the Heisenberg-like spin product has a coefficient, equivalent to an
exchange interaction, intrinsically positive, implying a tendency of the system to
order antiferromagnetically. In the next section we shall indeed study the AF state.

2.2. The antiferromagnetic state in the strong correlation Untit

The first step will be a manipulation of Thiele to put it in a tractable form.
Our starting point will be the remark that, in the subspace of states with no
double occupancy of the lattice sites, the local moment S; (1/2)(ni ↑— ni↓)
reduces to S; = σiniσ/2 as either one of nip's has to vanish. On the other hand,
(ni σ ) = (n — 277i) so that

because in the AF state viσj = —1. Next let us introduce the identity
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In the ordered state, the fluctuations of the order parameter are small, therefore
we can safely use the Hartree—Fock condition ((SI) — Szi)((Szi) — Szj) O yielding

Consistently with the assumption of the AF order being firmly established, we
shall drop altogether the contribution (Si+ Sj- + Si- Sj+) toSi•Sj.By expressing
Sz in terms of n σ , the AF part of the effective Hamiltonian due to the localized
particles can be cast in the form

We shall limit our description of the AF phases to the Nćel state as we did in
the low-correlation case. We shall consider the local moments to belong to two
interpenetrating sublattices A and B, such that the z nearest neighbours j of a
given site i of the A sublattice, with moment SziA - Sz , all belong to B and have
a moment SIB = —Sz. Each jB site is connected to an iA site by a vector d
independent of the site: ILA = Ri + d. We shall define a space-averaged exchange
interaction according to

where 4V = 2zt with t 2 the average of the hopping matrix element squared. Now
we can write the final form of HHeis in terms of reciprocal space vectors as

The calculations now proceed exactly as in the low-correlation case, with J
playing the role of U there, so that we leave them to the reader and give only the
final result for the order parameter for the rectangular DOS

where y E 2ΦW/zJ. As we found in the case U < W, the moment decreases
exponentially fast from the fully localized value n/2 when the itineracy (here
expressed by OW) is appreciable. The AF state of the HTCSC materials is still
not completely understood, particularly in the non-stoichiometric composition but
we cannot discuss the subject further.
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2.3. BCS-like pairing by transverse spin fluctuations

We want to show that the Hamiltonian of Eq. (2.1.5) contains the possi-
bility of pairing particles with opposite spins to form a Cooper pair. The result-
ing superconducting state, even when described by the standard BCS equations
[28, 29] has unusual properties, among which we shall consider only two: the crit-
ical temperature T, which can be unuSually high, and its variation with pressure
P, i.e. dTc /dP, which can be large and positive. We shall follow with some mod-
ifications Ref. [29]. The starting point is the development of Si • S5 = S; 57-1-
(S= S. + Sj S; )/2 in the spin-1/2 fermion representation S= E (ni ↑— ni↓)/2,

St E a Tail, Si E α+i↓αi↑, yielding

To proceed, we replace the Hubbard term U Ei n i↓ n

i

↑  by UNη according
to the definition of η above and we make a mean-field decoupling of the terms
from Si • Si. Namely, the non-diagonal four-operator terms will be approximated
as follows:

and similarly for the Hermitian conjugate. The minus sign introduced by commu-
tating operators referring to different sites and spins is of fundamental importance,
because it is responsible for transforming an apparently positive (i.e. particle re-
pelling) interaction into a negative (i.e. particle attracting) one, therefore open-
ing the way for the Cooper pair formation even in the absence of the attractive
electron—phonon interaction.

We shall study the phase with no AF order so that (S; ) = O at all tem-
peratures and for all values of n, including n = 1. Of course, at the end of the
calculations one has to check, for given n, whether or not the assumed phase is
more stable than the AF phase. By introducing as usual the isotropic hopping
approximation, one has J = (1 — Φ) 2 (2t 2/U) = (1-Φ) 2 (W 2 /2z 2 ) where we use
W E 2zt. We then obtain in the reciprocal space representation a hamiltonian
with a BCS-like term

where N is the number of sites, j is a nearest neighbour of i, the vectors k belong

to the Brillouin zone and ck = ztγk with γk = (11z) Σ(.ii) eik'(Ri—Ri).
The order parameter is now Ak = zγk(αi↑αj↓). It describes the coupling

of electrons with opposite spins on nearest neighbour sites. This means that the
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corresponding Cooper pair is very localized in real space, and therefore it is a wave
packet with many Fourier components. By comparison, the original BCS picture of
phonon coupled Cooper pair yields a wave packet spread over hundreds of lattice
cells, being by consequence very localized in the reciprocal space. In a synthetic
way one can say that the SC coherence length and the range 5{k} of k-vectors
present in the wave packet are linked by Ę 1/δ{k} so that the present, and the
classical, models represent the two opposite limits of, respectively, very small Ę and
very small 8{k}. To interpret Eq. (2.3.3) as a BCS-like Hamiltonian we identify
the coefficient of the last term J/2 E V as the analog of the electron—phonon
averaged matrix element. The gap parameter Δk E VAk is assumed isotropic in
the following, Δk —> Δ. In the normal state (Q = 0) the equilibrium value of 77
at T = O can be found by minimizing the ground state energy. To describe the
DOS for given spin σ of the uncorrelated electrons in the normal state we choose
the rectangular shape, which yields ij vanishing for U/W > 2. The normal state
of the HTCSC constitutes a fascinating field of research and is, at the moment,
rather poorly understood. We shall leave a concise discussion of the PM state in
the RVB picture for the following section.

We shall now proceed to analyse the correlation-mediated (as opposed to
phonon-mediated) superconducting state by using the classical formal structure
of BCS theory [2]. Some care is needed when applying the BCS formalism to a
strongly correlated electron liquid. We arbitrarily fix a cut-off pairing frequency
ω (corresponding to the Debye frequency ωD in the case of phonon coupling) by
ħω = kBTN, where TN is the hypothetical Neel temperature for a material with the
same effective exchange J. It can be shown [29] that the choice of ω is irrelevant
to the general conclusions. The mean-field relation for the three-dimensional case
kBTN = 2zJS(S + 1)/3 when S = 1/2 yields  kBTN = zJ/2. The BCS theory of
the SC state [2] yields two bands
EF = ΦW(n — 1)/2 is the Fermi level. The bands are separated by a gap 2Δk

at zero temperature Δk obeys the equation
passing to the isotropic approximation for Vk and Δk and to the integration
the enemies. the eau equation reads

where G and śi are, respectively, the upper and lower boundary of the energy inter-
val over which the coupling is effective. In the phonon mediated case,

ξu= —ξ1 =ħωD,independent of any other feature (e.g. bandwidth or band filling)
of the system, while the present case can be different. Let us consider the case
of U/W 2 so that Φ(n 1) « 1 and think of increasing n at fixed U/W.
When 0(n) is large, ħω < |Φ(n)W/2 ± EF(n)| and ξu = —ξ1 = ħω, in analogy
with the phonon case. But as n grows we come to the value n = ni for which
ħω = Φ(nl)W/2 -F EF(ni). For n > ni, while Gu = h.ω as before, 6 becomes in-
dependent of w and dependent on n: ξ1= —Φ(n)Wn/2. As n increases further,
we arrive at n = n„ such that ħω = Φ(nu)W12 — EF(n„). For n > n„ we have

ξu=Φ(n)W(2— n)/2: both integration limits are independent of ω, depending
only on n for given W and x. It is important to note that in the small-Φ limit,

vhere
and
By

over
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when n„ < n < 1, one expects a rather small average radius (or coherence length)
of the Cooper pairs, because the corresponding wave function includes k-vectors
from the whole Brillouin zone implying a small spread in the real space of the
corresponding wave packet. This is consistent with the small coherence length
observed in the high-Tc materials. From Eq. (2.3.4) one finds

where Γ = exp[1/p*σ(EF)V]. The equation for Tc is [2]:

Changing variables from ξ to ζ  ≡ξ/Φ and writing down explicitly V and pó yields

To proceed we have to consider separately the different cases for the energy cut-off.
This choice between different cut-offs has a physical origin analogous to the cut-offs
in the spin bag model discussed previously. For large, ξu = —ξ1 =ħω and

ζΦ/kBTc»1 over most of the integration range becauseħω » kBTC,so that one
can resort to the usual BCS approximation Th [ζΦ/2kBTc]≈11 yielding

We obtain the analogous of the BCS formula: kBTc = 1.141h exp(-2ΦW/J). When
ΦW « 2ħω the approximation over which the derivation of Eq. (2.3.8) from
Eq. (2.3.6) is based is no longer valid and one has to solve Eq. (2.3.6) numerically.
An explicit solution can be obtained in the limit of vanishing 0, i.e. for n --> 1
and U/W > 2. Indeed, in that case ξu = -ξ1 = ΦW/2 and Φζ/2kBTc « 1 so that
Th(Φζ/2kBTc) Pe. Φζ/2knTc . We obtain the following expression:

It can be verified at once that the result above is consistent with the assumption
Φζ/2kBTc « 1 made in the derivation. We can also explicitly evaluate Δ/kBTc in
the insulating limit. As y E 1/p*σ (EF)V « 1, we can develop A from Eq. (2.3.5)
from f 1 + y yielding

Notice that the above equation sets a general upper boundary [30] to the increase
in the 2Δ/kBTc ratio due to the enhancement of the DOS value at the Fermi level
within the weak coupling approximation. Inn other words, independently of the
specific coupling interaction, if the efficiency of coupling is low (i.e. the coupling is
weak) that ratio cannot increase beyond the value 4. This is relevant in connection
with the much higher (and very controversial!) values reportedly observed in the
HTCSC.

The BCS formalism correctly applied to the present model gives a non-van-
ishing Tc (actually, a maximum of Tc (n) for given U/W) at the half-filled band



Magnetic Aspects of Superconducting Pairing 115

limit [28, 29, 31]. This is a non-physical feature, due to the use of a mean-field
approximation. What is physically significant in the above calculations is that they
show how purely electronic interactions can be the origin of superconductivity with
critical temperatures determined by the magnetic (J), and not by the vibrational
(ħωD) energy scale. Of course, such a magnetic-pairing sustained SC phase is in
competition with at least the AF phase, and the compresence of AF and SC phases
in the phase diagram is expected. In connection with the HTCSC materials, it is
interesting to note that such a mechanism of superconductivity would explain the
observed increase in Tc under pressure, because kBTc J = 2t 2/U and t increases
under pressure, as already mentioned.

The mechanism discussed above is non-standard, being independent of the
electron—phonon interaction, but, once the phonon-independent origin of the cou-
pling is clarified, the development of the model follows the standard procedure for
condensation of the Fermi liquids. We shall now briefly describe another model,
the resonating valence bond (RVB) proposed by Anderson and co-workers which,
starting from the same general framework of strongly correlated electron liquid,
opens quite different directions of investigation.

2.4. Superconducting states in the fermion RVB picture

The RVB model was invented by Anderson to study the magnetic triangular
lattice [32] well before the discovery of HTCSC's. We shall discuss it under two
points of view: first, by analysing the nature of the quasi-particles forming the
condensed state introduced in the previous section. Second, we shall introduce the
slave boson representation of the RVB model, which opens a quite new way of
thinking about fermions in strongly correlated systems.

To study the nature of the quasi-particles in the SC state, we shall follow
[28, 31-33] by starting from Eq. (2.3.3) above in the limit U » W so that rt = O
and i --ł fe . Let us observe that the mean field approximation to the St ST +H.c.
term we employed in Eq. (2.3.2) was not the most general one. Actually one should
write, e.g.

The first two terms in the second line of (2.4.1) describe the coherent hopping pro-
cess whereby two opposite spin particles exchange sites i and j. Their amplitudes
assumed isotropic and spin-independent, are p ≡ (J/2)(α†iσασ). Such a process is
distinguished from the incoherent hopping of the kinetic energy term with ampli-
tude ek, where each particle moves independently. After applying the decoupling
(2.4.1) we can Fourier transform the remaining two-operator terms. When work-
ing at arbitrary temperature with quasi-particles created through a Bogolyubov
transformation, which does not preserve the number of quasi-particles, it is con-
venient to use the grand canonical ensemble. If µ(n, T) is the chemical potential,
then the reciprocal space representation of the t—J Hamiltonian within the mean
field approximation (2.4.1) is [31]:
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Notice that the bandwidth W = 2z(f0t + p) has contributions from both coherent
and incoherent hopping. In this sense one can say that the magnetic fluctuations,
contributing the coherent hopping amplitude, enlarge the bandwidth. Now let
us diagonalize the Hamiltonian by the transformation to quasi-particle operators

c2k:

The transformation creates quasi-particles composed by the states having opposite
spins and wave vectors, i.e. those which are coupled in a singlet Cooper pair.
Notice that even though the new operators are spin independent, nevertheless their
commutation relations are fermion-like: [cik , c l p] + = δkp . The diagonalization

condition on Ok is

implying that sin Ok > (<)0 if k > (<)kF, where the Fermi wave vector kF is defined
by εkF = limT→0 μ(n, T). The ck's operators describe the RVB quasi-particles,
whose spectrum has unusual properties both in the normal and the superconduct-
ing state. Indeed, the diagonalized Hamiltonian has two bands of quasi-particles
with energies

In the usual BCS treatment, one has that a pair of states | kσ) and | — k, —σ), with
the same energy ek are mapped onto two SC states with energies
f √(εk — EF)2 + Δ2 . Here the same pair is mapped onto a single, doubly de-
generate, state with energies given by (2.4.5). However, according to the position
of k with respect to the Fermi surface, determining the sign of ek — p, such state
can have one of two energies d |E1k|. One very important consequence is that,
when ek —> µ , i.e. on the FS, the two possibilities coalesce as limk→k+ E1 k =

= A. Namely, the gap does not open for wave vectors on the FS.limk_^kF E1k 
This should be reflected in, e.g. a linear rise of the specific heat with temperature
(Cv .^.s T instead of Cv Pe. exp(-Δ/kBT) as predicted by BCS [2]) as well as in
modifications of other experimental observables [31, 34].

The SC state of the transformed Hamiltonian has been studied essentially
by the techniques described in the preceding section in Refs. [31, 35]. We shall not
repeat their calculations because they do not add new concepts. The distinction
between the SC and the normal (quite unusual, actually) RVB states can be made
only after self consistently solving the equations for the critical temperature, the
chemical potential and the coherent hopping amplitude. For some values of the
parameters J and f0 (1 — n) there will be a stable SC phase. We shall not deal
with those results for lack of space. The reader interested in the complete phase
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diagram of the RVB model is referred to [28, 31, 34, 36]. Instead, we shall comment
on the properties of the non-SC state, i.e. the state where both Δ and p can be
non-vanishing, without a long-range order.

Due to their fermion-like commutation properties, and to the absence of a
gap at the Fermi surface (FS), just like in a normal metal, we expect that the
quasi-particles described by Eq. (2.4.3) possess Fermi liquid (FL) properties, at
least for n < 1. Let us check if the FS really exists by evaluating the discontinuity

Z1kFin the occupation numbers for arbitrary n. In the usual FL this is evaluated
per spin direction, while here each type 1, 2 of quasi-particle mixes both spins. We
shall consider the sum ZkF E (Z1kF +Z2kF )/2. We obtain from the transformation
relations

For ko-) states inside the FS (nkσ ) = 1 while (a ? at kl) = O while the converse
happens outside the FS. By taking into account the sign change of sin θk on cross-
ing the FS, one obtains

If Δ → 0, then Zk F /2 —> 1 and we recover the usual Fermi liquid result. But if
A ≠ 0, for k such that ek = p, presumably defining the Fermi wave vector kF,

ZkF would be negative, which is unacceptable. Actually, following the Luttinger
theorem [35], the Fermi wave vectors to consider are those determining the FS
of the unperturbed system, i.e. when J = O and by consequence p = A = 0. If
kF is therefore redefined in such a way, and indicated by kF, then at kF one has
1 > Zk0F /2 > O where the vanishing requires

The picture of the RVB normal state is that of fermionic particles with some
bosonic character (being composed of both up and down spins), having a gapless
spectrum as in a usual metal, but with a possibly vanishing discontinuity in cor-
respondence to the unperturbed FS. The non-zero value of p indicates that the
coherent fermion hopping is present in such a state together with some bosonic-like
pair correlation expressed by A. The Luttinger theorem [35] is violated, indicating
that we are describing something different from a Fermi liquid. Indeed, such a
state of fermionic quasi-particles with vanishing discontinuity at the FS is called
the Luttinger liquid [33]. It is typical of systems where the spin and charge degrees
of freedom are separated by a huge energy. Of its many interesting properties, we
shall just mention one [31]. Let us see how the excitations of pairs of particles
look like. We shall distinguish three cases, according to the wave vectors of the
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creation operators being both below, or one below and one above, or both above,
the unperturbed FS. One has for arbitrary vectors p, k:

In the case k,p < kF the only relevant term is α-k↓α-p ↓sinθksinθp(1—δkp)
which describes the creation of two holes (charged excitation) having the same
down spin. If p < kF < k, we are left with α†

k↑

 

α -p

↓  cos θk sin Op describing a spin
i.

flip (spin excitation) with no change of the total charge. We can therefore create
separately spin or charge excitations. This formal feature has a physical counter-
part in the different scales of energy which correspond to perturbing, respectively,
the magnetic configuration by flipping a spin (J W 2 /U) and the charge distribu-
tion by creating a double occupancy (U » J). The former excitation can be easily
created, the latter cannot. This situation should be contrasted with the situation
encountered when dealing with the spin bag model in the previous section, where
it was basic to the argument that doping a hole into the system implied a change
both in the charge and in the spin.

2.5. Holon-spinon representation of the normal RVB state

A very innovative point of view has been subsequently developed in a series
of papers by Anderson et al. [37-39]. Its roots are in one of the early papers by
Hubbard [40] who suggested to deal with the strong correlation limit by consider-
ing the local term U Σ ni ↑on↓as the unperturbed Hamiltonian and to treat the
hopping term as a perturbation. The Hilbert space of the local Hamiltonian is
composed by four states per each site. Each state la) corresponds to a given occu-
pancy of the site {α )} = {|0), |r), |I), |T J)}. The state |↑↓) will also be indicated as
|2) in the following. The local operators introduced by Hubbard are Xi αβ ≡ |α)(β|.
In the following, the site label will be inserted only when needed for clarity. The
diagonal operators X,"" are projectors, obeying, for each site, the completeness
relation

The Xαβ operators allow one to use the diagrammatic techniques, as shown in
Ref. [41]. Their commutation relations are

where the sign inside the commutator is -1- (Fermi-like) but in the case when at
least one of the Xiαβ involved is Bose-like, i.e. produces an integer change of spin:
Xi00, Xiσσ, Xiσ-σ, Xi -σσ. The usual Fermi operators αiσ, α†iσare expressed through
the X fl operators by considering all the combinations of the latter ones which
yield the same effect as the application of the former ones, e.g. 47|0) = w) etc.
Then
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The factor Q = ±1 is needed for the decomposed form of the ai, operators to pre-
serve the proper commutation properties. The Xαβ operators share the properties
of both Bose and Fermi operators. Their twofold nature can be made explicit by
writing them in terms of purely fermionic (ft) and purely bosonic (bi , d;) opera-
tors [37] as follows:

From these relations it is apparent that b; bi and d= di are the number operators for,
respectively, the empty and the doubly occupied sites. According to Eq. (2.5.3)
the original Fermi operators now read

The k-space representation of the ai, operatorS iS

where the site label on the boson part indicates that all Fourier components of the
Bose operators iii e.g. 	 _
component of the Fermi operators. As the set of the new operators is overcomplete,
we need some constraint to get sensible results. It is provided by the obvious
requirement that the original operators in the new form still retain their Fermi
nature, i.e.
by using Eq. (2.5.5), we obtain that the decomposition preserves the statistics
provided

It is easy to check that the equation above is obtained also from the completeness
relation (2.5.1) for the X operators when expressed through the new operators.
Physically the constraint means that each site cannot be occupied by more that
one particle, independently of its type. While usual bosons can occupy any state
in arbitrary number, the bi and di bosons have to obey the restriction above:
their freedom is restricted, i.e. they are slave bosons. This has consequences on
their statistics. Indeed, from the constraint it follows that the motions of the
bosons and the fermion components of the electron are correlated. Indeed, the
flow e of particles of generic type xi, is non-vanishing if their number is not
conserved locally. It therefore is given by the value of the commutator of the
number operator n; E E i, s4 x iσ with the Hamiltornian. From (2.5.6) it follows

As the f particles move there has to be a flow in the opposite direction (a backflow)
of bosons in order to fulfil the constraint. This means that as soon as a real elec-
tron is added to the system, it decomposes into two quasi-particles which travel
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oppositely! The fermion part will have to fulfil the Pauli principle, and therefore its
momentum will be at least equal to the Fermi momentum, i.e. non-vanishing. The
boson counterpart will be forced to move also with a non-vanishing momentum
opposite to the former, while it would, if free, condense into the zero-momentum,
lowest energy, state. Being enslaved by the constraint, it is obliged to move, hence
to stay out of the condensed state. Baskaran, who discusses in more detail the
process [42] has termed it transfer of statistics. Its implementation into the math-
ematical description of the slave boson pairing will be dealt with in the next
section.

The representation of the original operators in terms of slave bosons given
above is, actually, too simple, and has some problems which we shall not discuss
here. The reader interested in the more advanced developments is referred to [43].

Even if their use is more convenient in the strongly correlated limit, the
slave boson technique is general. One can indeed write the Hubbard Hamiltonian
for arbitrary U in the new representation as follows:

The decomposition of the electron operators into bosonic and fermionic components
yields an explicit separation of charge and magnetic degrees of freedom, which, as
discussed previously in connection with the very different energy scales of the two
types of excitations,, is a desirable property for any representation of the strongly
correlated systems. Following [37], let us observe that the boson operators b and
d; create excitations with charge Q6 = —Qd = +Hel. Now, on each site, the number
operator of the physical electrons, when decomposed according to Eq. (2.5.5) reads

Given a generic particle xi = {αi, bi, di} the relative current follows from

where Px is the particle polarization operator. From Eq. (2.5.9) one has

so that Ja = Jb+Jd, showing the electron current is completely accounted for by the
spin-independent bosonic current. By consequence, the fermions fi do not carry
charge. We conclude therefore that the slave bosons carry charge, but no spin,
while the fermions carry spin but no charge. The pictorial view of the situation is
that, if on a site there is one electron whose spin is not coupled in a singlet state
to any other spin (not necessarily a nearest neighbour), then the spin pattern is
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disturbed, but the charge pattern is not. This configuration is the effect of applying
f ó on the RVB ground state, where all spins are coupled in singlets with bonds
of any length: Anderson termed such excitation of the RVB spin pattern a spinon.
Spinons are always created in pairs, because both ends of a resonating bond are
simultaneously broken. Once created, each spinon can move independently of its
twin. Conversely, if one creates a hole or a double occupancy, the charge pattern is
modified, while the spin pattern is not. Indeed, the spin on the site is zero, as the
two true fermions have opposite spins, so that there is no unpaired spin, i.e. no
spin excitation. The usually accepted name of the excitation creating a double hole
is holon while some authors call the creation of a doubly occupied site a doublon.
So far, the value of U is arbitrary. To go to the case of large correlation, one
performs [37] on the decomposed Hamiltonian (2.5.8) the same type of canonical
transformation which yielded the kinetic exchange (or 1—J Hamiltonian). In the
subspace without doubly occupied sites, (d †idi)= O and we are left with:

Notice that in Ref. [37] the coefficient of the last term is 41 2 /U due to their use of
the kinetic term with the Hermitian conjugate contribution written explicitly. The
projected Hamiltonian has the charge carrying particles (bosons) appearing only
in the kinetic term, while the exchange contribution involves only spinons. At this
point one makes a mean-field approximation on the bosonic part, followed by an
isotropic approximation by assuming b †i-->(b†i) —> (b).It follows that the effective
number of b bosons is connected to the number of electrons in the band by

implying b2 = (N — Nelectrons)/N = nholes/site. For the half-filled band case
(Nelectrons = N) there are only virtual charge fluctuations as (b) 2 = O. The charge
excitations become observable if some holes are doped into the system. From the
constraint (2.5.6) it also follows that the spinon number ∑σf†i σ fi σ  = 1— (b) 2 = n.

To make a connection with the previous treatment of the RVB model in
terms of configurations of true electrons, let us consider each term of the trans-
formed hamiltonian. The fermionic factor in the hopping term can be interpreted
as describing the process by which a lone spin (a spinon) is destroyed on site j
and created on site i. This process by itself does not correspond to a real electron
hopping, which additionally requires (see Eq. (2.5.5)) the concurrent presence of
the bosonic process, i.e. the creation of a holon at j and its annihilation at i. In
a mean-field approximation for the bosonic process, the amplitude of the hopping
is teff = 1(b) 2 . This result can be compared with Eq. (2.4.2), tell = f0t 21(b) 2 as
f0 = (1 — n)/(1 — n/2) 2(1 — n) = 2(b) 2 . This shows that the two approaches,
while giving esSentially coinciding reSult for n —> 1, are not strictly identical when
the number of holes is appreciable. This is not surprising, as we are consider-
ing an exactly transformed Hamiltonian but we are truncating its perturbative



the fermionic part to HhOP and define

122 M. Acquarone, M. Paiusco

development. The different approaches might well yield coincident results if the
perturbative development was carried on to infinite order, but there is no reason to
expect equal order terms in the development to exactly coincide. The above anal-
ysis of the hopping term indicates in which sense one can say that a true electron
is composed by a spinon and a holon. The two components may, under appropri-
ate circumstances, have a different dynamics (however subject to the constraint
(2.5.6)) which does not correspond to the motion of a true electron in the usual
sense. This is apparent in the last term, where only the spinon operators appear.

The relation (b) 2 = 1 — n implies that if the band is half-filled, there are
no holons, and the transformed Hamiltonian reduces to the last term, which has
the same structure as the spin fluctuation term in (2.3.1). One can diagonalize
it [37] by the same transformation, with an important difference. In the former
case, we transformed physical particle operators (the electrons) whose number
was a constant of the system in all its states. Then the quasi-particle spectrum
(2.4.5) depended on the true chemical potential p of the original particles. Here
we have to transform operators fi, not corresponding to physical particles, and
whose number is not conserved. By consequence, there is no chemical potential
for the fiσ.•This does not mean that we have no constraint on the overall number
of quasi-particles. Indeed, in all states of the system, the constraint (2.5.6) has
to be fulfilled. This is done by introducing a Lagrange multiplier for each site (in
principle), which plays the role of a kind of chemical potential for the mixture of
bosons and fermions. The chemical potential p of the original Hamiltonian, does
not depend on the site index being by definition the same everywhere in the crystal.
Also, as p is connected with the electrically charged physical particles, and the
charge is carried only by the bosons, only boson operators multiply p in (2.5.12).
It follows that any diagonalization of (2.5.12) which involves the replacement of
the Bose operators by their average values, yields a p-independent quasi-particle
spectrum. For n = 1 (so that (6) 2 = 0) if one defines the RVB order parameter

(f †i σ f†j-σ — f †jσ f †iσ),then, in analogy with the limitekOof (2.4.5), the
quasi-particle spectrum reads: Elk, = JΔ|γk|. If ri < 1 so that also the first term
in (2.5.12) contributes, one has Efk = |γk|0 2 (b) 2 + (JΔ)2 . The fi

σ

 quasi-particles
are gapless therefore and their bandwidth, for n ≈ 1 is of the order of I J.

To discuss briefly the dynamics of the coupled spinon—holon system, let us
pass to the reciprocal lattice representation of the transformed hamiltonian. The
hopping term reads: HhOP = t ∑kpqσ bkb1, fqv f p+q- k σzγq-k which we separate
into Darts. i.e. with or without change in the boson wave vector. yielding

where nfqσ  =_ f†qσ  fqσ . The first contribution, diagonal in the wave vectors, describes
the coherent motion of holons and spinons. If there we approximate in mean field
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The first contribution describes the holon motion whose bandwidth B = zlψf
depends on the spinon number nf. As already required by the relation (2.5.7)
between holon and spinon currents, the holon can move only if there are spinons in
the system. Also, the mass of the holon is of the order of the electron mass because
from (2.5.6) one has EQ n u = n 1, implying B ri = W/2. Alternatively one
can stress the itineracy of the spinons by writing

By approximating ∑kbkb†kγq-k (b) 2 one obtains

showing the electron bandwidth renormalization due to the bosons. The part of
the above Hamiltonian with a change in the boson wave vector describes the scat-
tering of spinons and bosons, which has an amplitude of the order of the hopping
bandwidth. When a real electron moves individually, i.e. in the normal state, its
two components, the spinon and the holon, are scattered against the analogous
components of other electrons and this appears as the electron—electron scatter-
ing contribution to the resistivity [37-39]. However, its temperature dependence,
which goes as T2 in usual Fermi liquids, is now expected to go as T. Indeed, it is
proportional to the thickness kBT of spinon states around their Fermi surface
times the distribution function of the final states. Now, in the absence of exclusion
principles on the final holon states characteristic of bosons, the number of available

. final states is essentially determined (at kBT « U) by the hole doping due to the
chemical composition, which is independent of temperature and fixes (b) 2 = 1— n.
Also, as T —ł O the resistivity should vanish in samples of good purity, because
the impurities are not decomposable into holons and spinons, so that they cannot
scatter the composite electrons.

Now, let us schematize the HTCSC's as composed of conducting layers sep-
arated by insulating material, following [39]. At high temperatures, the interplane
conductivity is due to the tunnelling of true electrons between planes. Both compo-
nents of the true electron have to jump simultaneously. On the starting plane, the
electron is decomposed. A spinon moves out of the plane towards a neighbouring
one, and its bosonic counterpart goes the opposite way. If another electron (not
necessarily on the same layer) decomposes into a holon landing on the adjacent •
plane together with the spinon, a single true electron has been transferred. Now
the spinon, being a fermion, has to find a free state in the final layer. On each layer,
the spinons form a band of width ΔJ as shown before, hence the spinon Fermi
level will have a value of the same order. The incoming spinon has to overcome
a barrier ≈

the reportedly quite different behaviour of the in-plane and out-of-plane resistiv-
ity, the former being linear in T, more or less as in a metal, the latter going as
T- 1 reminiscent of an insulator. What happens at T = Tc in this picture? Well,
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Tc is just the lower temperature supplying enough energy to the spinon to allow
it to overcome the Fermi level in the adjacent layers and to follow its bosonic
counterpart in transferring a true electron between planes. Below Tc this is not
possible. Notice that in this model Tc grows with J and with the interlayer spacing,
because the width of the insulating layer is a further obstacle to the passage of the
spinon. At temperatures low enough to confine the spinons inside the layers, only
the holons can move between layers.

The superconducting state according to the RVB model is due to pair holon
condensation. A thorough discussion would require introducing the paired boson
problem, which is quite subtle even in the standard case [44]. Additional compli-
cations are introduced by the slave bosons not being free to condense in arbitrary
large number onto the lowest energy state, as well as by the fact that the binding
of two bosons happens differently according to the number of dimensions. For lack
of space we cannot go through the details, and we refer the reader to the literature
[39, 45]. Summarizing the features of the superconducting state from holon pairing
as predicted by the RVB model, one has a gap in the single particle excitations,
qualitatively like the BCS case, but possibly too small to be detected. The criti-
cal temperature is zero for the half-filled band case, then increases with the hole
doping (contrary to the results of the fermionic version discussed in Sec. 2.4) and
with the strength of the magnetic interaction.

The RVB model is far from being accepted by the scientific community,
despite its ingenuity. The present authors are sceptical about its applicability in
the case of HTCSC's. Indeed, to mention just one point of criticism, while the
predicted increase in the perpendicular resistivity pc (T)- as 1/T on approaching
Tc from above is crucial to the validity of the model, there is evidence that in
good single crystals of YBCO [46] the presence or absence of a linear behaviour
of pc (T) down to Tc depends on the preparation condition. Therefore the 1/T
trend seems to be an extrinsic effect, not connected to the intrinsic nature of the
carriers. In single crystals of LaxSrxCuO4 the predicted rise of MT —> V) is
observed [47] for x < 1.2, but in those samples also the in-plane resistivity shows
the same trend, contrary to RVB predictions. At, and above, the reported [47]
optimal hole concentration for superconductivity both in-plane and out-of-plane
resistivities decrease linearly as T --3 T+. Also the predicted linearity of the normal
state in-plane resistivity down to zero temperature has not been observed. Indeed,
FuBa2Cu3O7 in the normal state induced by high magnetic field at few Kelvin
reportedly shows [48] usual residual-resistivity behaviour. One can also mention
that there is growing evidence from photoemission and other measurements that
the HTCSC's present a well defined Fermi surface positioned in the reciprocal
space as required by the Luttinger theorem. The superconducting state seems
therefore to originate from a normal metallic phase whose basic features are those
of a Fermi liquid.
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