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The experimental technique of spin polarised neutron scattering as used
in magnetic form factor measurements is presented. An introduction to the
interpretation and the calculation of magnetic form factors and magneti-
zation densities is given. The experimental technique of neutron scattering
theory as applied to elastic spin polarised scattering experiments is briefly
introduced. The calculation of the magnetic form factor and the magnetiza-
tion densities are considered for simple model systems such as a collection of
localised magnetic moments or an itinerant electron system. The discussion
is illustrated by an experimental investigation of the magnetic form factor in
the heavy fermion superconductors UBe13 and UPt3. Magnetization density
maps and magnetic form factors are presented, and their implications for
other physical quantities are briefly discussed.
PACS numbers: 75.25.+z, 71.28.+d

1. Introduction

Neutron scattering and in particular spin polarised neutron scattering is
a powerful tool for the characterization and investigation of physical properties
on an atomic scale. The charge neutrality and magnetic dipole moment of the
neutron make it an ideal probe for the investigation of magnetic degrees of freedom.
In addition to using neutron scattering for investigating phenomena connected
with magnetism (by e.g. establishing the nature of magnetically ordered states),
experiments may be devised for the characterization of details of electronic wave
functions. Such an experiment is realised when spin polarised neutrons are used for
the determination of the magnetic form factor and of the magnetization density.
Contrary to spectroscopic techniques which infer details of the wave function by
an investigation of the experimentally determined level scheme (e.g. the crystal
field levels of localised f moments) magnetic form factor measurements referred
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to here are elastic measurements and therefore these measurements do not involve
an energy transfer between neutron and target. Consequently this method does
not yield direct information on the energy eigenvalues of the Hamiltonian, that is
the energy levels or band structure of the system under investigation. Instead a
magnetic form factor investigation can be classified as an investigation of the real
space properties of some electronic wave functions. This point will be discussed
more fully below, and a clarification will be given as to what exactly is meant by
"some electronic wave functions". The investigation of the magnetic form factor by
spin polarised neutron scattering is therefore complementary to experiments such
as de Haas—van Alphen measurements, which investigate the details in momentum
space of energy levels and the Fermi surface.

In order to be able to fully appreciate the potential of spin polarised neu-
tron scattering for the investigation of magnetization densities and magnetic form
factors a brief introduction is given to the experimental technique. First, the basic
principles are reviewed of elastic nuclear and magnetic scattering, and a derivation
is given for the description of a magnetic form factor measurement. Two simple
models, a localised moment system and an itinerant electron model, are consid-
ered, and for each of these model systems a magnetic form factor experiment is
analysed. In the second section the theory is illustrated using the results of an ex-
perimental investigation. A magnetic form factor measurement is considered which
was carried out on the heavy fermion compounds UBe1 3 and UPt3. The exper-
imental magnetization densities and form factors are presented and discussed in
relation to the simple model systems mentioned above. Some consequences of the
experimental findings are briefly discussed.

2. Magnetic form factor measurements

Magnetic form factor measurements are usually carried out on single crystals
employing spin polarised neutrons. The discussion here will be limited to the case
of a paramagnetic material with a crystallographic structure which has a centre
of inversion symmetry.

An experimental determination of the magnetic form factor comprises of
two different measurements. By using unpolarised neutrons, a first experiment
establishes the details of the nuclear structure of the crystal under investigation.
In a second experiment and by using spin polarised neutrons a quantity known as
the flipping ratio is determined for a number of Bragg reflections.

In order to establish the details of the nuclear structure it is important
to carry out both experiments on the same single crystal and preferably also at
the same temperature. The nuclear structure is determined by measuring the inte-
grated intensity of Bragg reflections. A subsequent refinement of a crystallographic
model and its comparison with the measured Bragg intensities is used to establish
important parameters such as lattice site occupations and temperature factors. In
this way the nuclear structure factor is determined precisely.

In a second experiment the Bragg reflection is measured using spin polarised
neutrons and with the crystal in an external magnetic field. Due to the presence of a
magnetic field a ferromagnetic moment is induced in the paramagnet. As a result of
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the induced ferromagnetic order magnetic Bragg scattering occurs. The magnetic
scattering arises in addition to nuclear scattering. As both the magnetic and the
nuclear unit cell have the same dimensions, magnetic and nuclear Bragg reflections
are superimposed. It turns out that this superposition is more than a mere addition
of nuclear and magnetic intensities. By using spin polarised neutrons it is possible
to make use of an interference term in the scattering cross-section between nuclear
and magnetic scattering. This combination of magnetic and nuclear scattering in
the neutron scattering cross-section can be used to precisely determine a quantity
known as the flipping ratio. The flipping ratio is a function of the magnetic and
nuclear structure factors. If the nuclear structure factor is known, a measurement
of the flipping ratio allows a very precise determination of the magnetic structure
factor. The physical significance of the entities mentioned here will be discussed
more fully below. A more detailed analysis of the theory of neutron scattering can
be found in standard text books [1-4].

2.1. Nuclear scattering

For structure determination and for the measurement of the magnetic form
factors it suffices to restrict the description of nuclear scattering of neutrons to
elastic scattering only. In particular, it is only the integrated Bragg scattered in-
tensity which is of relevance here. By definition the Bragg scattering is elastic
scattering with no energy transfer between the crystal and the neutron. The dif-
ferential neutron scattering cross-section can be written in the form

where ba is the scattering length of the atom i which is located at position R .
k is the neutron scattering vector and dΩ is the infinitesimal solid angle into which
the neutrons are scattered. The summation is carried out over all atoms in the
crystal.

Making use of the translational symmetry of the crystallographic structure,
the summation in (1) may be separated into two partial sums

Here the index v sums over all unit cells of the crystal and the summation
j is carried out over all atoms within the unit cell v. The position of the atoms
in each unit cell is given by IZV — IL„ and it is measured relative to the origin of
the v-th unit cell as determined by 11 k,. A nuclear structure factor of the unit cell
FN(k) may be defined as

where the atomic position Ri is measured with respect to the origin of the unit
cell. In general, FN(k) will be a complex number. However, for a crystallographic
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structure with a centre of inversion symmetry the nuclear structure factor may
be chosen to be real. (By taking the point of inversion symmetry as the origin of
the unit cell, every atom at position Ri has its symmetry related atom located
at —IL= and with the atom having the same scattering length. As a consequence,
every contribution biexp(ik • Ri) in (3) is combined with its complex conjugate
bi exp(—ik • R) and in the summation the imaginary parts cancel.)

Inserting (3) into (1) and carrying out the summation over all unit cells one
arrives at

Here N is the total number of unit cells in the crystal and δ(k — τ) is the "delta
function" with r being a reciprocal lattice vector. The summation is carried out
over all reciprocal lattice vectors r. Thus scattering occurs for scattering vectors
k which correspond to a reciprocal lattice vector and with an intensity which is
determined by the square of the modulus of the nuclear structure factor FN(τ ). In
actual experiments the Bragg reflection will not be such a sharp peak as indicated
by the "delta function" in (4). Peak broadening occurs due to the resolution of
the instrument and also due to sample characteristics (e.g. as given by the spatial
extent of the coherently scattering regions in the sample). However, the details of
the peak shape are not of interest here, and there is no need to pursue this point
any further. The integrated Bragg intensity for a Bragg reflection characterised by
T is given by

S(τ ) is a reflection dependent scaling factor. The scattering vector dependence
of S arises due to the method used to integrate the Bragg peaks. The geometric
correction is known as the . Lorentz correction, and it is readily eliminated from
the measured integrated intensities. There remains an overall scale factor which
is scattering vector independent. The scale factor is proportional to N, the total
number of unit cells in the crystal.

Denoting the new scale factor (after the elimination of the scattering vector
dependence) by S, the experimentally determined integrated intensity of the Bragg
reflection is given by

Up to a constant the measured intensities are therefore determined by the
square of the nuclear structure factor. However, for the description of the nuclear
structure the value of FN(τ ) is required. As pointed out above, for structures with
an inversion centre of symmetry the nuclear structure factor may be chosen real.
Thus solving the nuclear structure reduces to choosing, for each reflection, the
"correct" sign in the equation

It is pointed out that solving the above phase problem for all reflections is
equivalent to the determination of the atomic positions in the unit cell. This is
so because having obtained the structure factors FN(τ ) for a sufficient number of
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reflections, the atomic positions may be obtained by Fourier inversion. Writing (3)
in the form

it is seen that the nuclear structure factor is nothing else but the Fourier transform
of the interaction potential, which in turn is determined by the positions of the
atoms and their scattering strengths.

The above derivation was carried out using some simplifying assumptions.
The lattice has been taken as perfect, and the thermal motion of the atoms has
been neglected. The temperature motion and zero point fluctuations can be taken
into account by the substitution

where W(k) is the temperature factor which may be anisotropic. The function
exp(—W(k)k 2 ) is known as the Debye—Waller factor. Other experimental factors
such as extinction and absorption corrections are also readily applied [5], and
standard procedures exist for taking these into account [6].

2.2. Magnetic scattering

In comparison to nuclear scattering, for which the interaction potential be-
tween neutron and nucleus is determined by the nuclear force, magnetic scatter-
ing of neutrons is based on an entirely different interaction mechanism. Magnetic
neutron scattering referred to here arises due to an electromagnetic interaction be-
tween the magnetic dipole moments of the neutron and those of the electrons. An
introduction and a complete derivation of the basic formulae for magnetic neutron
scattering can be found in standard text books on neutron scattering [1, 2].

Here the interest is focused on elastic magnetic scattering only, with the mag-
netic structure being restricted to ferromagnetic order. For the purpose of carrying
out the neutron scattering experiment it is immaterial whether the ferromagnetic
order is intrinsic or whether it has been induced by the application of an external
magnetic field.

A more detailed analysis (as given, e.g., in [1, 2, 4]) shows that the strength
of the neutron—electron magnetic moment interaction is determined by the product
of the gyromagnetic ratio of the neutron -y (-y = —1.913) and the classical electron
radius r0 with r0 = 2.81785 x 10 -15 m. The product bM = γr0 = —5.39 x 10 -15 m
defines a magnetic scattering length bM, which provides the unit for measuring the
strength of magnetic moments in magnetic neutron scattering experiments. There-
fore in the following the magnetic moments µ will always be measured in units of
bM. It is also important to note here that the magnitude of bM is comparable with
typical magnitudes of nuclear scattering lengths.

For a ferromagnetically ordered state the cell dimensions as defined by the
chemical unit celł are not changed. Hence by summing over the same atoms as
in (3) a magnetic structure factor of the unit cell may be defined as
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Here µ i is the magnetic moment located on the i-th atom, and fi(k) is the atomic
magnetic form factor of the atom. The form factor fi is normalised according to

The magnetic structure factor as defined in (10) is a vector quantity. The overall
strength of the magnetic neutron scattering is determined by the sizes of the mag-
netic moments. Atoms with no magnetic moment, µ i = 0, will not contribute to
the magnetic scattering. An additional scattering vector dependence is introduced
into the structure factor due to the magnetic form factor. In general, the magnetic
form factor tends to decrease with increasing magnitude of the scattering vector.
As a consequence, the magnetic scattering diminishes for increasing scattering an-
gles. This is in contrast to nuclear scattering for which the equivalent nuclear form
factor is independent of the scattering vector and equal to one.

Similarly to the case of the structure factor for nuclear scattering the mag-
netic structure factor can be expressed as the Fourier transform of the interaction
potential. For magnetic scattering the interaction potential is given by the mag-
netization density within the unit cell

where M(r) is the position dependent magnetization. M(r) is a periodic function
which has the periodicity of the nuclear lattice for a ferromagnetically ordered
state. For a magnetization distribution which is given as the superposition of lo-
calised atomic magnetic moments located at ri within the unit cell the magneti-
zation density is given by

In this case the magnetic structure factor in (12) reduces to

A comparison with (10) yields the atomic form factor in the form

as the Fourier transform of the real space atomic magnetization mi(r). The total
magnetic moment µ i is defined as the integral of mi(r) according to

This definition together with (15) ensures the normalization of the atomic form
factor as defined in (11). For localised moments the integration in (14) and (15) is
carried out over the whole of the three-dimensional space. All the various magnetic
contributions of each individual atom are subsumed within mi. In general, mi
is composed of several magnetic moments, including spin and orbital magnetic
contributions and, if necessary, a core polarization as well.

For the case of itinerant electron magnetism, for which the electronic wave
functions are sufficiently delocalised, the general form (12) has to be used for
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the description of the magnetic structure factor. In general, it is not possible to
uniquely allocate a given magnetization density to an individual atom, and the
notion of a magnetic moment located on an atom loses its meaning. It is only
meaningfuł to talk about the total magnetic moment per unit cell, Mtot, with the
total magnetic moment being defined as

Obviously for the case of localised magnetic moments Mtot is determined by the
sum over all magnetic moments in the unit cell.

In this way the magnetic structure factor may be defined for both, localised as
well as itinerant electron magnetism. However, for neutron scattering additional
complications arise due to the vector form of the magnetic structure factor as
compared to an equivalent scalar quantity for nuclear scattering.

It turns out [1, 2, 4] that only those components of FM(k) which are per-
pendicular to the scattering vector k may give rise to magnetic neutron scattering.
The components which are active in the scattering process are defined as

In order'to combine the magnetic scattering contribution as defined by the vector
in (18) with the nuclear scattering part as described by the scalar quantity FN(r)
the vector FM(k) has to be reduced to a scalar. A more detailed analysis shows
that it is the scalar product of F ┴M(k)with the polarization vectorPof the neutron
beam that is needed for the neutron scattering cross-section. The scalar magnetic
structure factor is defined as

For perfect polarization of the neutron beam P is a unit vector, the direction of
which indicates the polarization direction. For a partial polarization of the neutron
beam |P| is defined as

with n1, n↓, being the number of spin up or spin down neutrons in the beam. F, F ┴M(k)
is the entity which plays the equivalent role to the nuclear structure factor in the
formula for the scattering cross-section. For this reason F 1 ( k) will be referred
to as the magnetic structure factor. (This should not be confused with F ┴M(k)as
defined in (10).) Considering only magnetic scattering, the differential cross-section
is determined as

where τM is a reciprocal lattice vector of the magnetic lattice and NM is given
by the number of magnetic unit cells in the sample. For ferromagnetic order the
chemical and magnetic unit cells are identical. Consequently N11 and τM have
the same values as their nuclear counterparts.
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With nuclear and magnetic scattering present both contributions have to
be combined. There are the two possibilities of either combining the intensities of
nuclear and magnetic scattering or of adding the structure factors first and then
inserting the sum into the formula for the differential cross-section.

For the first possibility the intensities are summed by adding (4) and (20).
This corresponds to an incoherent superposition of the scattered waves from the
nuclear and the magnetic subsystems of the target. Here, however, nuclear and
ferromagnetic scattering is considered which is superimposed on the same Bragg
reflection. Under these conditions it is the sum of the nuclear and the magnetic
structure factors as determined by (3), (14) and (19), which has to be evaluated.
The underlying assumption is one of a coherent superposition of nuclear and mag-
netic scattering contributions. The sum has to be inserted into the expression for
the differential cross-section. Assuming perfect polarization of the neutron beam
one arrives at

for a neutron spin polarization parallel (a) and antiparallel (b) to the external
magnetic field direction. For a partially polarised neutron beam the cross-section
is an average of (22a) and (22b) with the weighing factors determined by the
proportion of spin up and spin down neutrons in the neutron beam. For this case
the cross-section takes the form

The direction of P is taken to be parallel to the direction of the external magnetic
field. This form of the differential neutron scattering cross-section differs by the
presence of an interference term between nuclear and magnetic scattering from the
cross-section obtained for an incoherent superposition of the nuclear and magnetic
intensities. The incoherent superposition is realized for an unpolarised neutron ex-
periment, for which the magnitude of P is equal to zero. In this case the differential
cross-section takes the form

It is the presence of the interference term between nuclear and magnetic scattering
which forms the basis of magnetic form factor measurements. It depends on the
polarization of the neutron beam through P in (23) or through the change of sign of
F, I in (22a) and (22b). In the next section it will be discussed how this interference
is exploited experimentally and how it can be utilised for the investigation of details
of the magnetization on an atomic level.
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2.3. Experimental

The quantities which have to be determined by experiment are the nuclear
and magnetic structure factors. These are measured in separate experiments and
by using unpolarised and polarised neutrons, respectively.

The measurement of the nuclear structure factor is equivalent to a structure
determination experiment. In the experiment the integrated Bragg intensity is
determined for a number of Bragg reflections. As discussed above in Sec. 2.1, a
structural modeł may be used to refine the free parameters of a model structure,
thus obtaining the nuclear structure factors FN (r) for all Bragg reflections used
in the refinement. The nuclear structure factor together with other experimental
entities such as lattice parameter etc. are assumed known when the spin polarised
neutron experiment is carried out.

For the determination of the magnetic form factor a single crystal of the ma-
terial under investigation is orientated in an external magnetic field in such a way
that the magnetic moment is along the magnetic field direction. This necessitates
that the magnetic field is directed parallel to an easy axis of magnetization. In or-
der to maximize the magnetic signal (see (18)) it is preferable to align the magnetic
field perpendicular to the scattering plane (which is defined as the plane spanned
by the wave vectors of the incoming and scattered neutrons with the scattering
vector being the difference of these two vectors). Spin polarised neutrons are used
in the form factor measurement. However, no polarization analysis is needed after
the neutrons are Bragg scattered by the sample under investigation.

For a given Bragg reflection r and assuming a perfect neutron spin polar-
ization the differential neutron scattering cross-sections are determined to be

The integrated intensities of this Bragg reflection are given by

Here TT denotes a neutron spin polarization parallel to the applied magnetic field,
while TI indicates an antiparallel neutron spin polarization.

By using either the differential cross-section of the integrated Bragg intensity
the flipping ratio R(τ ) is defined as

Experimentally it is easier and faster to measure the relative intensities of spin
up and spin down neutrons at only one point on the Bragg reflection (which in
the experiment is found to be broadened to a Gaussian peak shape compared to
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a "delta function" indicated in the above formulae) instead of having to obtain
the integrated intensities for both neutron spin orientations. Therefore, in the
experiment the crystal is set so as to maximize the counting rate for a given Bragg
reflection and the relative counting rates are measured as determined by (25a) and
(25b). To the extent that the shapes of the nuclear and magnetic Bragg reflections
are identical R(τ ) does not depend on how the ratio is defined, whether by using
the ratio of the integrated intensities or by utilizing the ratio at only one point of
the Bragg reflection. As discussed in detail elsewhere [5], other experimental factors
are readily included in the definition of the flipping ratio. Taking into account a
partial polarization P of the neutron beam, the efficiency e of the neutron spin
flipper and the angle O between magnetic moment direction and scattering vector,
the flipping ratio takes the form

Returning to the expression of the flipping ratio as given in (27), the equation is
readily inverted to yield the ratio of the magnetic to nuclear structure factors as
a function of the flipping ratio

The ambiguity given by the ±2 √R(τ) term in (29) is related to the ambiguity of
writing R(τ ) in (27) either in terms of F ┴M/FN(τ)or by using the inverse ratio
FN(τ )/F ┴M(τ).It is the equivalent to the question of whether F┴M(τ)/FN(τ)is
larger or smaller than one. In an actual experiment this does generally not present
a problem, because a choice can be made on physical grounds.

At this point it is worth stressing again that the knowledge of the nuclear
structure factor is vital for the determination of F ┴M(τ). The uncertainty in the
magnetic structure factor is firstly determined by the experimental error in the
measurement of the flipping ratio R(τ ), but secondly also, and more importantly,
by the uncertainty in the nuclear structure factor. As seen from (29) the magnetic
structure factor is measured in units of the nuclear one, and consequently any
systematic error in the determination of the nuclear structure factor (as given by
the neglect of temperature factors, absorption, extinction etc.) will influence the
accuracy of the magnetic structure factor.

Some particular features of the flipping ratio are worth noting. It is first of
all a quantity which is independent of a scaling factor. By taking the ratio in (27)
the scaling factors have cancelled. Furthermore, it is a function only of the nuclear
and the magnetic structure factors.

To appreciate the significance of this statement consider the case of weak
ferromagnetic order characterised by

When expanding (27) to leading order in F┴M

(

τ)/FN(τ ) the flipping ratio is given
by
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The deviation of the flipping ratio from one is a direct measure of the magnitude of
Fili as measured in units of the nuclear structure factor. As FN(r) is known from
a previous structure determination experiment the deviation of the flipping ratio
from one immediately yields the value of F ┴M(τ):both itsmagnitude and phase!(It
should be stressed again that only centrosymmetric structures are considered here.
For such structures the phase degree of freedom of the structure factors reduces
to a choice of a ± sign in front of the wave function.)

In these respects the measurement of the flipping ratio is unusual. It ren-
ders possible an absolute measurement without the necessity of a normalization.
Furthermore, it allows for a simultaneous determination of the amplitude and the
phase of the magnetic scattering contribution. The physical origin of this can be
traced back to the presence of the interference term in the differentiał neutron
scattering cross-section. As the interference term is proportional to the product of
the nuclear and magnetic structure factors the phase of the magnetic scattering
can be related to the phase of the nuclear structure factor. The phase problem
for the nuclear structure factor (which is the key question for any structure deter-
mination) has been solved and the phase is already determined (up to an overall
phase factor common to all reflections). Thus the knowledge of the phase of the
nuclear structure factor can be used to extract the information on the phase of
the magnetic structure factor.

It is also worth pointing out that due to the interference term the sensitivity
is significantly increased. While for an experiment employing unpolarised neutrons
and with ferromagnetic order present in the sample the scattered intensity is given
by

for an experiment carried out with spin polarised neutrons the intensity change is
determined to be given by

For a ratio of F┴M

(

τ

)

/FN(τ ) = 0.1, the change of intensity, δI/I, may be compared
with and normalized to the intensity I of an identical sample without magnetic
order. For an unpolarised neutron experiment δI/I is of order 1%, while a value of

. order 20% is found for 81/I for the spin polarised neutron scattering experiment.
This increased sensitivity in spin polarised neutron scattering experiments allows
for a more accurate determination of the magnetic scattering contribution and,
finally, also of the magnetic structure factor.

Thus, a measurement of the flipping ratios yields accurate values of the
magnetic structure factors. As an experimentally determined entity the magnetic
structure factors are model independent. However, the collection of values of mag-
netic structure factors is not very revealing if presented on its own and in tabular
form. It is more informative to consider the Fourier transform of the magnetic
structure factors.

As pointed out above the magnetic structure factors are determined by the
Fourier transformation of the magnetic interaction potential. According to (12)
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the magnetic structure factor FM(τ) is determined by

The inverse transformation is given by

with V being the volume of the unit cell. The summation is carried out over alł
reciprocal lattice vectors τ. The magnetic structure factors are the Fourier coeffi-
cients in the series (34). The Fourier transform back into real space will therefore
construct a picture of the real space interaction potential, which amounts here to
the magnetization density distribution. In this manner a map of the magnetization
density may be constructed and presented in real space as either a cut through
the unit cell or as a projection.

In order to be able to perform the Fourier transformation by using the exper-
imentally determined magnetic structure factors an infinite number of the Fourier
components in (34) has to be known. Experimentally this presents a problem, as
only a finite number of coefficients can be determined. A Fourier series is an infinite
series and it is only complete if all coefficients of the infinite series are included.
Therefore, constructing a magnetization map by using a finite subset of coeffi-
cients will result in "incomplete" and thus erroneous magnetization density maps.
However, it turns out that a magnetization density map constructed by using a
finite set of coefficients in (34) may still be meaningful and yields a magnetization
density with the important features present. In order to understand the limitations
imposed by the finite number of magnetic structure factors and to appreciate the
significance of magnetization density maps a more detailed discussion of some of
the relevant aspects is helpful. A discussion relating to these questions has been
given by Moon [7].

A reflection which is not measurable by neutrons is the Bragg reflection
corresponding to τ = O. However, for this reciprocal lattice vector the definition
of the magnetic structure factor in (12) reduces to the evaluation of the total
magnetic moment in the unit cell as given in (17). While this reflection is not
accessible in the neutron scattering experiment, its value may be obtained by
magnetization measurements using conventional magnetometers. Its inclusion in
the Fourier series and in a magnetization density map adds a scattering vector
independent contribution. This Fourier coefficient may thus be considered to fix
the zero level in the magnetization density map.

A more serious limitation is the upper cut-off in Iτl in the summation of the
Fourier series. Denote by k, the magnitude of the scattering vector τ beyond which
no more experimental values of Fi 1 (T) are available. k, is taken to characterise
the upper limit of the cut-off in the Fourier series. The coefficients belonging to
^|τ| > kc give rise to fast oscillating contributions in the unit cell. These components
are needed for the description of the finer details in the magnetization density in
real space. By not including these magnetic structure factors in (34) these details
are lost. This loss of detailed structure corresponds to a picture where in the
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perfect real space magnetization density (which is obtained by including all Fourier
coefficients in (34)) a local average is carried out over a small volume element so as
to eliminate the fast oscillating contributions within this volume element. In order
to estimate the dimension of the volume element and to be able to relate it to k,
the following procedure may be used (it suffices to consider the one-dimensional
case). The magnitude of the cut-off wave vector kc defines a characteristic length
in reciprocal space. Let r, be a characteristic length in real space. A reasonable
estimate for the interval of average [0, rc] will be given by a value of r, for which
the phase factor exp(ik • r) undergoes several (but at least one) oscillation(s) as
r is varied within the limits of the averaging interval and for a scattering vector
k > kc . This criterion results in a definition of r, given by k, • r, = 2a. Writing
kc in terms of a cut-off scattering angle
neutron wavelength employed in the ex

as

be taken to be a square or a cube with the linear dimensions de.
Thus carrying out a Fourier transform on a limited set of F

may still yield a correct magnetization density which, however, is deprived of some
details in its structure. The experimentally determined magnetization densities are
therefore not sensitive on a length scale defined by r c , with the fine structure being
smeared out over the average volume.

The coefficients which remain in (34) are all those Fourier components which
belong to scattering vectors τ with |τ| < k,. It is obvious that within this limited
range the set of coefficients must be complete, or at least as complete as possible,
for a meaningful magnetization picture to emerge from the Fourier transformation.
As the various Fourier components in (34) are linearly independent a "missing
component" in the series cannot be compensated by other ones. A magnetization
density map will be severely distorted when constructed with an incomplete finite
series with some coefficients missing for a T with |n < kc . An example of a
magnetization density map with a missing component will be given below.

So far the discussion has been restricted to a paramagnetic material with
a centrosymmetric crystallographic structure, and the procedures of a magnetic
form factor measurement have been developed within this restriction. In order to
complete this section, a brief discussion is given of the problems which arise when
these restrictions are lifted.

First, consider a magnetically ordered state of the sample. A brief but very
instructive introduction to the investigation of magnetic order by neutron scatter-
ing has been given by Brown [8]. The crystallographic structure is still required
to be centrosymmetric. For a ferromagnetically ordered sample a magnetic field is
not needed for inducing magnetic moments or aligning disordered ones, because
long-range ferromagnetic order is assumed present. However, in order to define a
unique direction of the magnetic moment, and thus Fê (τ), an external magnetic
field has to be applied. This is true even in the case of strong magnetic anisotropy,
which tends to align the moments along a given crystallographic axis. Under these
circumstances the externał magnetic field has to remove the degeneracy connected
with the domain structure in the magnetically ordered state. Only if the whole sin-

with a being the
_ _ 	 )eriment, the interval of average is defined

For the two- or three-dimensional cases the volume of average may

fined by F
wrier coefficients
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gle crystal is also characterised by only one magnetic domain the approximations
do apply in the derivation of the flipping ratio in (27). It has already been pointed
out above that in the case of magnetic anisotropy the external magnetic field must
be applied parallel to an easy axis of magnetization. All these precautions have
to be taken in order to uniquely define the direction of magnetic moments in the
crystal under investigation.

For the case of an antiferromagnetically ordered structure the measurement •
of the magnetic form factor is complicated due to several factors. For many an-
tiferromagnetic structures the magnetic order changes the size of the unit cell.
As a result, magnetic and nuclear Bragg reflections occur at different points in
reciprocal space. For a magnetic form factor measurement, however, the presence
of nuclear and magnetic scattering is needed at the same reciprocal lattice point.
If a nuclear reciprocal lattice vector τnuclear  does not coincide with a τmagnetic,
the nuclear-magnetic interference term will be absent from the elastic neutron
scattering cross-section. Thus an interference term in the elastic neutron scatter-
ing cross-section will be absent for antiferromagnetic structures with an increased
unit cell volume due to the magnetic order. This does also include more compli-
cated magnetic structure such as incommensurate or helical ones.

Therefore, only the case of an antiferromagnet without an increased unit
celł needs to be considered further. Such an antiferromagnetic order occurs, for
example, in a bcc structure where the magnetic atoms at positions (0, 0, 0) and
(1/2, 1/2, 1/2) have their magnetic moments aligned antiparallel with respect to
one another.

The various cases of magnetic ordering are best described with the help of the
time inversion operator O t . When acting on a magnetic moment M this operator
reverses the moment direction according to

In addition to the time inversion operator b i it is only the symmetry element
for the inversion in space, I, which is needed out of all the symmetry elements
which characterise the crystallographic structure. Space inversion does not change
the orientation of the magnetic moment M. (This is due to the fact that the
spin part of the magnetic moment is not coupled to the spatial coordinates, while
the orbital part of M is proportional to the pseudovector r x p, where r is the
position of the electron under consideration and p is its linear momentum. The
vector product r x p does not change its orientation when acted upon by I.) For
ferromagnetic order and some antiferromagnets the inversion symmetry operator
is not combined with the time inversion. As a consequence any atom at position R i
has an equivalent atom located at —Ri. Thus grouping those atoms together which
are related by inversion symmetry; their contribution to the magnetic structure
factor is found to be proportional to

As seen from (36) under the above assumptions the magnetic structure factor is a
reał quantity. (This was assumed above and stated without proof for the magnetic
structure factor of the paramagnet in an external magnetic field.)
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If, however, the antiferromagnetic state is characterised by a combination of
operators as given by the product of space inversion times time inversion symmetry
operator; the magnetic moment of the symmetry related atom is reversed. This
results in a magnetic structure factor proportional to

This magnetic structure factor is purely imaginary. It is phase shifted by 90° with
respect to the nuclear structure factor. As a consequence of this phase shift the
flipping ratio as defined in (27) is identically equal to one. Denoting the real and
imaginary part of the structure factor by Re and Inn, respectively, and under the
assumption as stated above that the structure factors are given by

The flipping ratio as defined in (27) is equal to one for all reflections τ because
the identity

is fulfilled for all Bragg reflections. Therefore no R(τ) ≠1 reflection may be found
for an antiferromagnetic structure which combines the space inversion element
with time inversion.

However, for a structure for which the space inversion element is a proper
symmetry element both the nuclear and magnetic structure factors are real quan-
tities. This is the case for a ferromagnetic and some types of antiferromagnetic
structure, for which the assumptions leading to (36) are true. Only for these struc-
tures a measurement of the flipping ratio is a possibility.

However, in addition to the structural requirements which have to be fulfilled
for a nonzero flipping ratio to occur, a further complication arises due to the
presence of magnetic domains in the sample. For most magnetic structures and
including a coupling to the lattice a small number of magnetic domains is possible.
It suffices here to restrict the discussion to two domains, which are related to
one another by time inversion symmetry. Such a pair of magnetic domains is
always possible. It is appropriate to denote these domains as a 0° and a 180°
domain, because the 180° domain is obtained from the 0° domain by an inversion
of all magnetic moment directions. It may also be described as obtaining the 180°
domain from the 0° one by the action of O ► on the 0° domain.

Both domains are energetically degenerate. It may therefore be expected
that the two domains occur with the same probability in a sample. Therefore, the
magnetic structure factor of the whole sample has to be obtained by averaging
over the various magnetic domains. This average, however, will result in a zero
average magnetic structure factor.

With the definition of the magnetic structure factor as given in (12) and by
using an obvious notation to identify the structure factors for the various magnetic
domains one obtains
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The magnetic structure factor is a vector, the direction of which is determined
by the direction of the magnetic moments. As the magnetic moment direction is
reversed by going from one domain to the other the magnetic structure factor
changes sign. Therefore, a zero average magnetic structure factor results for any
sample with equal amounts of magnetic domains present which are related by time
inversion symmetry. This argument applies equally well for a ferromagnetically as
well as an antiferromagnetically ordered structure.

In order to remove the degeneracy of the 0° and 180° magnetic domains
a magnetic field has to be applied. For a ferromagnetically ordered sample it
suffices to apply a homogeneous external magnetic field. This field  removes the
degeneracy of the magnetic domains, and if of sufficient strength it may stabilize
a single magnetic domain in the whole crystal.

For an antiferromagnet the applied magnetic field has to have the modulation
of the antiferromagnetic structure in order to remove the degeneracy. The wave
vector of the magnetic modulation is of the order of angstroms, and at present no
externally applied magnetic fields are available with such short wavelengths. Other
experimentally controlled parameters such as pressure do not break time inversion
symmetry, and they are therefore not capable of removing the degeneracy of the
magnetic domains.

Thus one is left with the conclusion that for an antiferromagnetic structure
a flipping ratio may be observed for certain structures and under the condition of
an imbalance of magnetic domains which are related by time inversion symmetry.
The above discussion has illustrated the complexity of the argument and it has
borne out the experimental difficulties which have to be overcome.

Not withstanding these problems measurements of the flipping ratio in an
antiferromagnetic structure have successfully been carried out [9]. The interested
reader is referred to the original publications for a detailed discussion of various
aspects of the experiment.

For an antiferromagnetically ordered substance an external magnetic field
may be applied to induce a ferromagnetic component. This may be achieved by
tilting the magnetic moments out of their antiparallel alignment into the direction
of the external magnetic field thereby creating a ferromagnetic component. This
situation is illustrated in Fig. 1. The ferromagnetic component of the magnetic
structure is characterised by a wave vector k0 = 0, while the antiferromagnetic
component is described by a wave vector q. It is only the k0 component which
couples to an applied magnetic field. The contributions of both wave vectors may
be decoupled and considered separately. For the ferromagnetic component the
theory applies as developed above. For the antiferromagnetic component all those
complications arise which have been considered in the earlier discussion. In the
experiment proper account has to be taken of both magnetic components. Thus,
in a form factor measurement of an antiferromagnetic crystal (which does not
increase the dimensions of unit cell by ordering antiferromagnetically) and which
is placed in an external magnetic field it is only the ferromagnetic component
which contributes to the interference term. However, due account has to be taken
of the antiferromagnetic scattering contribution to the total intensity of the Bragg
peak.
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For crystallographic structures which do not possess a centre of inversion
symmetry the nuclear and magnetic structure factors are complex quantities.
This implies a łarger number of components for their characterization. One com-
plex number, or equivalently two real numbers to characterise real and imagi-
nary parts, are needed as compared to only one real number and a sign in the
case of centrosymmetric structures. The generalization of the above derivation to
non-centrosymmetric structures will result in more complicated expressions [5].
Denoting the reał and imaginary parts by' and ", respectively, and dropping the
scattering vector dependence of the functions, the flipping ratio takes the form

While the nuclear structure factor Fir + iFN" is known, it suffices to note that a
single measurement of only one flipping ratio per Bragg reflection is not sufficient
for extracting the complex quantity F ┴M(τ).A second measurement is needed for
which the externał magnetic field direction or the orientation of the crystał is
reversed.

As pointed out above the real part of the structure factor is related to that
part of the magnetization which is symmetric with respect to the inversion opera-

.  tor. The imaginary part on the other hand is antisymmetric under space inversion.
If the external magnetic field direction is reversed, the real part of the magnetic
structure factor will not change its sign while the imaginary part will. Thus re-
versing the external field direction will yield a flipping ratio given by

For a non-centrosymmetric structure the flipping ratio is different for the two con-
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figurations of the magnetic field. These two measurements are in general sufficient
to determine both the real and the imaginary part of the magnetic structure fac-
tor. For a centrosymmetric structure the second setup will yield the same flipping
ratio as the first measurement.

3. Magnetic form factor calculations for some simple model systems

In the previous section the magnetic form factor measurements have been
considered from an experimental point of view. The magnetic structure factors
and their Fourier transform in the form of magnetization density maps are the
experimentally determined quantities. In order to fully interpret the experimental
observation an attempt has to be made to quantitatively describe magnetization
densities or magnetic structure factors. By using a model, parameters have to be
obtained from observation for a description of the magnetization on an atomic
level.

For the most general case the theory will be complicated, and the interested
reader is referred to the literature for details of some theoretical aspects of neutron
magnetic form factors (Harmon [10]). It will also not be attempted here to derive
the full expressions for the magnetization in real space or of the wave vector de-
pendent susceptibility (see e.g. Oh et.al. [11], Cooke et al. [12]). Rather in order to
illustrate the power of magnetic form factor measurements in this section atten-
tion will be focused on some simple model systems. The first case is characterised
by delocalised or itinerant electrons, while a second model system is one with a
collection of localised and atomic-like magnetic moments.

The theoretical evaluation of M(r) necessitates the calculation of matrix
elements of the form

where |W) is the many-electron wave function of the crystal under investigation.
Operators will here and henceforth be denoted by a — sign in order to distinguish
the operator from its expectation value.

Depending on the form of the operator it may be more convenient to present
the wave function either in momentum space or in position space. These Hilbert
spaces are defined such that the state vectors of the Hilbert space are either eigen-
states of the łinear momentum operator p with

or of the position operator r as given by

The momentum space and the position space are assumed to be complete

and the state vectors normalised
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The transformation which yields 11.0 as either a representation in momentum or
in position space is given by

with the functions u(k) and u(r) being given as

Within u(k) and u(r) is contained the information connected with the occupation
of the various levels or energy bands of the solid. For a complete description of the
quantum mechanical state both the state vectors and the functions u(k) and u(r)
have to include an index σ• to denote the electronic spin degree of freedom. The
functions u(k) and u(r) are not independent from one another. The transformation
of u(k) from a momentum space representation to a position space representation
is achieved by a Fourier transform.

For the magnetization operator M(r) a separation is possible of the total
magnetic moment operator into a spin and an orbital contribution according to

Both the spin and the orbital contribution to the magnetization operator have a
position dependence given by

For some magnetic materials the orbital component is zero. This may be
the case either for a magnetic moment with L = O (with Mn 2± and Gd3+ being
examples) or it may arise due to the quenching of the orbital moment due to
crystalline electric fields. Examples of the latter are found among the 3d elements
and their alloys. Under these conditions only the spin part of the magnetic moment
operator is active. The operator for the spin density, M

s 
(r), is defined as

The summation is carried out over all electrons in the crystal. The spin operator
S is determined as

where ś↑ and ś↓ are operators which distinguish between spin up and spin down
states of the i-th electrons according to

Here I T) and I 1) denote the spin state of a single electron. The vector n is a unit
vector which defines the axis of quantization in the system and a unique direction
with respect to which the electron spins are either up or down.
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Using the above definitions and transforming to a position space represen-
tation the matrix element (52) is evaluated to

The matrix element (r'|Ms(r)|r") is readily evaluated with the result

On inserting (56) into (55) and integrating, the matrix element for the magneti-
zation takes the form

The physical significance of this result can be made even more transparent when
the spin variable is tranformed from S to the function ui(r). This is achieved in a
similar manner as above in (53) by separating the spin up and spin down parts of
ui(r) with the insertion of a spin index. The magnetization density can be written
in the form

The bar denotes the average spin up/spin down density of the electrons in the
sample with the average being obtained by carrying out Ei and summing over
alł electron contributions. This result  shows that the magnetization density in real
space is determined by the densities |u ↑↓(r)1 2 of spin up and spin down electrons.
A net magnetization arises at position r if the density of spin up electrons is
different from the one of spin down electrons at this location in the crystal. Within
this description no magnetic contribution arises for completely filled bands or
atomic orbitals. Thus only those electronic wave functions may contribute to the
magnetization density which belong to partially filled electronic bands or localised
levels. and which may give rise to a net magnetic moment.

As a special case and as an illustration of the discussion given above electrons
are considered in a solid with their wave functions being given by those of free
electrons. The quantum number k of these electrons is a good quantum number,
yielding the free electron wave function in momentum space. It is therefore appro-
priate to re-evaluate the matrix element for the magnetization density in reciprocał
space and by making use of the linear momentum representation for W).

According to (12) the Fourier transform of the magnetization density in real
space is the magnetic structure factor. Thus



Magnetic Fσrm Factσr Measurements ... 	 63

The index S on the magnetic structure factor indicates that it is only the
spin part of the total magnetization which is included. With the help of the com-
pleteness relation (46) the matrix element (k'lMs(r)|k") may be related to the
matrix element in position space as given in (56):

The matrix element formed by the combination of a linear momentum bar
and a position ket vector is given by

Inserting (56), (60) and (61) into (59) and making use of the "delta function"
in the form

the magnetic structure factor takes the form

In explicit form and including the spin up and spin down notation of u(k) the
above equation may be written as

Equations (63) and (64) are convolution integrals and nothing else but the
Fourier transforms of (57) and (58). The magnetic structure factor as given in (64)
is still generally valid and not yet restricted to the case of free electrons. •

The integration in (64) becomes particularly simple for the case of free elec-
trons. Their wave function is given by plane waves with u(k) equal to a constant.
The constant equals one for all occupied states, while the function u(k) is equał to
zero for k states which are not occupied. The energy dispersion for free electrons
is given by a parabola with degenerate energy bands for spin up and spin down
electrons.

In order to have a nonzero magnetic structure factor and a net ferromagnetic
moment the energy bands for spin up and spin down electrons must be displaced
in energy. This is illustrated in Fig. 2. The lifting of the degeneracy may be either
due to an external magnetic field or due to an intrinsic ferromagnetic instability
of the conduction electron band. The Fermi surface is assumed to be a sphere for
both spin up and spin down electrons with the Fermi wave vectors given by 4
and 4, respectively.
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The function ut (k — k') (ul(k — k')) has a nonzero value (≡ 1) in a sphere
of radius kF (kF). The centre of the sphere is located at k. Thus the convolution
integral (64) reduces to the integration of the intersection of two spheres of equal
radii and with their centres a distance |k| apart. This situation is illustrated in
Fig. 3. Using these geometric arguments and denoting |k| by kthe integral is
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The spin down integral can be evaluated in an identical manner, and the magnetic
structure factor is obtained by the subtraction of the results of the integration for
spin up and spin down electrons.
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The magnetic structure factor may be calculated for the two cases of com-
plete and partial magnetic polarization of the electrons as illustrated in Fig. 2. The
resulting magnetic structure factors are illustrated in Fig. 4, where the scattering
vector dependence is plotted for the magnetic structure factor normalised to one
at zero scattering vector by dividing FsM(k) by the total magnetic moment.

The results of the integration in (64) shows that the contribution of the free
electron magnetization to the magnetic structure factor is limited to low scattering
vectors. An upper limit of the contribution may be obtained from (64) by consid-
ering the fully polarised state. For scattering vectors k with k > max(k ↑F,k↓F)the
magnetic structure factor is zero for free electrons. A typical value for the Fermi
wave vector may be chosen to be 2 A. This results in an estimate of 1/π for the
upper cut-off in sin 0/a for a free electron contribution. For a partially polarised
state the upper cut-off will be reduced appropriately.

The magnetic structure factor for free electrons may be used to estimate the
contribution of conduction electrons. While conduction electrons in real solids are
delocalised they may not be entirely free (that is have a u(k) as given above).
But the free electron picture may serve as a reasonable guide to estimate their
contribution to the magnetic structure factor.

In "real" solids, and taking rare earth alloys as an example, the main part of
the magnetization is carried by localised magnetic moments which originate from
4f-electrons. A polarization of the conduction electrons will give rise to a smalł
additional magnetic moment, which will change the value of. the total magnetic
moment in the unit cell and influence the first few Bragg reflections. The total
f-electron moment obtained by an extrapolation of the magnetic form factors
or magnetic structure factors of higher scattering vectors to lower k values does
not always agree with the total magnetic moment as obtained by magnetization
measurements. The difference is usually attributed to a conduction electron polar-
ization. As their contribution is confined to low scattering vectors it is sometimes
approximated by a "delta function". There are only few Bragg reflections within
the range of a nonzero free election magnetic structure factor. Thus the detailed
form of the magnetic structure factor is not readily investigated experimentally by
using the technique discussed here. It is only due to a deviation of a few magnetic
structure factors from their extrapolated . values at low absolute scattering vectors
(and most significantly at k = 0) that the conduction electron polarization may
be detected. An approximation by some well localised and narrow function cen-
tred at zero scattering vector seems to be adequate to achieve consistency with
observation.

It is a general feature of the Fourier transform that a localised contribution
in one space will result in a Fourier transform which has a delocalised character.
The inverse is also correct. As for the case of free electrons their wave function is
delocalised in real space, thus giving rise to a sharply peaked magnetic structure
factor. In order to have a magnetic structure factor which is more extended in
reciprocal space the source of magnetization density must be more localised in
reał space.

The other extreme compared to the completely delocalised and free electrons
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is given by completely localised electrons. Such cases are realized in rare earth and
actinide metals and their alloys. The f-electron wave functions are welł localised
within the electron cloud of the free atom with a radius of the f-electron wave
function which is much smaller than the radii of the outer s or p electrons. Thus, if
atoms with a partially filled f-electron shell are alloyed into a solid, their f-electron
wave functions do not overlap and they remain to a large degree atomic-like. How-
ever, complications arise due to an interaction with conduction electrons, resulting
in a rich spectrum of physical properties including intermediate valency and heavy
fermion behaviour.

For the purpose of analysing magnetic form factor measurements, however,
the most important feature is the localization of those electrons which give rise
to the magnetization in the unit cell. With the example of f-electron systems in
mind it is to be expected that the magnetization of f-electrons can be uniquely and
unambiguously assigned to a certain atom. The overlap integral is small between
f-electron wave functions located on neighbouring atoms and the integral may be
approximated by zero for the purpose of calculating the magnetization density. It
suffices to consider only the localised contributions to the magnetization density
with a wave function |Ψ) for the whole crystal given in a tight binding approxima-
tion. For simplicity it is assumed that only one atom per unit cell is contributing
to the localised magnetization density. Within a band picture the f-electrons will
give rise to a narrow band. This f-electron band will be characterised by only a
very modest dispersion due to the smallness of the wave function overlap between
f-electron atoms on neighbouring lattice sites. For real solids the dispersion of the
f-electron band is mainly due to the hybridization with conduction electrons. In
order to simplify the description, only one band will be considered.

The wave function |Ψ) has to take due account of the localization and at the
same time also of the requirement of the Bloch theorem for wave functions in a
periodic lattice. For a localised moment system in a tight binding approximation
the state vector of the whole crystal may be expanded as

using the complete and orthonormal basis set of Bloch state vectors || Ψn(k)). As
pointed out above, only one band will be considered as a consequence of which
the band index n will be fixed.

The transformation of a Bloch state vector to a vector in position space
representation is given by

un (k, r) is a periodic function with the periodicity of the lattice. For the case of
one magnetic atom per unit cell and within a tight binding approximation the
function un (k, r) takes the form

The function Φ(r—Ri) is a wave function which is assumed to describe the localised
contribution arising from the i-th atom located at 1Z1. Ri is a lattice vector of the
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crystallographic lattice. The number N is equal to the number of unit cells in the
crystal which, for the conditions specified above, is equivalent to the number of
magnetic atoms in the crystal. The overlap is assumed negligible with

It is often assumed that .(i) is given in terms of wave functions which are char-
acteristic of the free atom. It may be composed of several parts according to

with all functions nα(r) of the expansion being located at the position of the i-th
atom. This allows the lifting of degeneracy of an atom in a crystalline environment
as compared to a free atom to be taken into account. For 4f-electron systems the
reduction in symmetry lifts the degeneracy of the 4f levels. The 4f energy levels
split into crystalline electric field levels with the degeneracies of the levels being
determined by the point symmetry of the atomic position. Here, however, the
splitting of the f-electron band or f-electron levels will not be considered further.

The matrix element for the magnetization density in real space is given by

In (71) the magnetization operator includes the spin and orbital contribution. With
the state vector as specified above in (66) the matrix element for the magnetization
takes the form

Inserting the matrix element un(k, r) in (68) into the above formula, M(r) takes
the form

Because of the assumption of negligible overlap between neighbouring lattice sites
the summation over the index j will only give a contribution for the term i = j.
Thus (73) may be written as .
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With a shift of the origin by Ri (i.e. by a variable transformation r— Ri → r) and
with the help of the "delta function"

the magnetization density in real space is finally obtained as

The factor f dk|αn (k)J 2 is nothing else but an occupation factor, which in real
space corresponds to an average occupation of the level, or levels, included in

Φ(r). The remaining factorΦ*(r)MΦ(r) yields the magnetization density in terms
of the wave function which describes the localised contribution. The occupation
factor may be absorbed into Φ(r), which then corresponds to a wave function
composed of a sum over all occupied states with weighing factors according to the
occupation of the various levels.

As pointed out above a frequently used approximation is to take the func-
tions Φ(r) to be given by those of a free atom. This is the reason why free atom
form factors are so often employed for an explanation of magnetization density
measurements. It is worth recalling the definition of the magnetic form factor f (k)
as given in (15) where f (k) was defined as the Fourier transform of the magnetiza-
tion density of a single atom. The results of calculations of atomic magnetic form
factors for rare earth and actinide atoms have been tabulated in the literature
both, for nonrelativistic [13] and relativistic [14] calculations.

Thus, the calculation of the magnetization density in real space has been
reduced to the calculation of the magnetization density of a free atom. Both spin
and orbital contributions to the magnetization are more readily calculated for the
free atom compared to a determination by a band structure calculation. Other
interactions such as spin—orbit coupling and crystal field interactions with the
crystalline environment may also be included. Particularly for the interactions
which give rise to the crystalline electric fields it is an advantage that for localised
and atomic-like wave functions it is possible to separate the wave function into an
angular and a radial part.

By transforming to spherical coordinates the wave function Φ(r) may be
written in the form /.(r) = R(r) Y(υ, φ). The angular part of the wave function is
readily treated thoroughly taking into account the removal of spherical symmetry
and the lifting of degeneracies in the crystal. Group theory predicts the splitting
and the level degeneracies. The remaining matrix elements which are not fixed by
symmetry considerations are commonly taken as free parameters to be fixed by
comparison with experiments.

A complete derivation of the mathematics is given in [15, 16] and in Lovesey
[2]. The case of crystal fields has been considered by Boucherle [17]. The radial
part of the wave function is not determined by symmetry alone but it is a rather
complicated function of r. Its full and satisfactory determination requires a fulł
scale relativistic calculation for the free atom. To go beyond this approximation
necessitates a fulł scale band structure calculation. This, however, is often not
feasible and the radial dependence of a free atom calculation is used for comparison
with experiment.
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The problem of calculating the magnetization density in the unit cell has
thus been reduced to the calculation of the magnetization of a single atom. Under
the assumption that it is adequate to treat the atom in the crystal essentially in
the same manner as a free atom all the standard procedures of spectroscopy may
be applied. While the mathematical procedure may be involved it is nevertheless
straightforward. A complete exposition of the physics of spectroscopy is given in
the book by Condon and Odabasi [18], and it should be consulted in addition to
the references. cited above.

After the discussion of the calculation of the magnetization density in real
space an experimental investigation will be considered in the next section. Exper-
imental results are presented and the magnetization densities are interpreted and
discussed in relation to the models of localised and itinerant electron magnetization
densities.

4. Experimental investigation

The investigation of the magnetic form factor and the magnetization densi-
ties in a solid commences with a proper characterization of the nuclear structure.
Therefore, the first part of this section will be concerned with the determination of
the nuclear structure as defined by the identification of the atomic positions. In the
second part data will be presented of the magnetic form factor and magnetization
density, and an interpretation will be given of the observation.

Two substances will be considered here, UBe13 and UPt3, with both com-
pounds belonging to the group of heavy fermion superconductors. The properties
of heavy fermion systems are of interest in themselves, and their investigation is
currently a very active field of research. However, the physical properties of heavy
fermions are not of primary interest here, but rather attention is focused on their
magnetic form factors only. Therefore, out of the rich spectrum of heavy fermion
properties it is only the static magnetic characteristics as seen in an investigation
of the magnetization densities which are of interest here.

$.1. Nuclear structure of UBe13 and UPt3

The crystallographic structure of UBe13 and UPt3 is cubic and hexagonal,
respectively. The crystallographic space groups proposed in the literature [19] are
given as Fm3m for UBe13 and P63/mmc for UPt3. These structures have been
confirmed in a detailed neutron scattering experiment, and the free parameters
have been determined experimentally for these structures as given by the positional
parameters of one Be atom position in UBe13 and the position of the Pt atom in
the unit cell of UPt3. Additional information was obtained in these experiments
with regard to temperature factors, absorption and extinction.

The nuclear structure of UBe13 is presented in Fig. 5 as a projection of the
atomic positions onto one of the cubic faces. Each unit cell contains 8 formula units,
with 8 U atoms and 104 Be atoms on two crystallographically different positions.
Denoting the two Be sites by Bel and Bell, there are 8 BeI and 96 BeII atoms
shown in the projection. For clarity a projection is shown in Fig. 5b which contains
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only the U atom positions. The uranium and BeI atoms each form a simple cubic
sublattice within the UBe13 structure. For the projections shown in Fig. 5b there
are two U atoms being projected down onto each uranium site.

It is worth pointing out some of the features of the projection of the nuclear
density in Fig. 5. First of all, it is a map in real space of the neutron—nuclei in-
teraction potential. It is obtained by a Fourier transformation using the nuclear
structure factors in a manner identical to the procedures described above for the
magnetization density. The nuclear density is seen to be smeared out over a small
region with the centre of the density being located at the position of the atom.
This smearing is a consequence of the finite Fourier series which has been used to
obtain the nuclear density. The "real" interaction potential is a "delta function"
when a standard description of the interaction potential is used with the Fermi
approximation. Thus, the finite width in the nuclear density map is entirely due
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to the number of the Fourier coefficients used in the Fourier inversion. In order to
allow a comparison with the magnetization density map the same cut-off is used
in the Fourier series as will be used later in the construction of the magnetiza-
tion density. In studying the projection of the nuclear density it should also be
taken into account that the nuclear density is measured by the strength of the
neutron— nucleus interaction. The strength of the interaction potential is param-
eterized by the neutron scattering lengths bu and bBe [20]. However, due to very
similar values of the scattering lengths for U and Be (bu = 8.41 x 10 -15 m, bBe =
7.79 x 10' 15 m) it is difficult to distinguish the U and Be atom positions from the
values of the contour levels in Fig. 5.

For UPt3 the nuclear structure is shown in Fig. 6 as a three-dimensional
picture. Figure 7 shows the position of the U and Pt atom for two cuts through
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the unit cell. The unit cell of UPt 3 contains two formula units with the atoms
located in two hexagonal planes with z = 1/4 and z = 3/4 and as shown in Fig. 7.
Both planes are related to one another by centres of inversion symmetry which are
located at the origin of the unit cell (0, 0, 0) and at the position (0.5, 0.5, 0.5).

Both nuclear structures are centrosymmetric as a consequence of which the
nuclear structure factors can be chosen real. Therefore, the phase factor of the
nuclear (and also of the (ferro-) magnetic) structure factor is given by either +1 or
—1. Both materials are paramagnetic in the temperature range investigated in the
form factor measurement. For UPt3 antiferromagnetic order is reported to occur
at approximately 5 K with a doubling of the unit cell. This, however, will not
interfere with the form factor measurements and therefore the antiferromagnetic
order of UPt3 will not be pursued further.

4.2. Magnetic fσrm factσr measurements in UBe13 and UPt3

In the spin polarised neutron scattering experiment the samples were placed
in a magnetic field of 4.6 tesla. For the UBe13 sample the magnetic field direction
was parallel to the crystallographic [1, 1, 0] direction, while for UPt3 the magnetic
field was along [2, 1, 0]. For UPt3 this corresponds to a configuration where the
field is in the hexagonal plane and perpendicular to the magnetically hard direction
which is found to be given by the crystallographic c-axis.

The flipping ratios of a number of the Bragg reflections have been measured
at temperatures of 10 K for UBe13 and for 5 K and 23 K for UPt3. As the flipping
ratios for UPt3 did not vary with temperature, the two data sets were merged in
order to improve statistics.

In the spin polarised neutron scattering experiments the flipping ratios have
been obtained for all measurable Bragg reflections with values of the scattering
vectors characterised by sin Θ/λ < 0.5 Ǻ-1 . In order to present the data in a
concise and meaningful manner one may assume that the magnetization arises
only from the 5f electrons located on the uranium atom. Due to the simplicity
of the structures for both UBe13 and UPt3 it is possible to reduce the magnetic
structure factor to the magnetic form factor of the uranium atom. Within this
modeł of only taking into account the 5f-electron magnetization and by using
(14) and (15) the magnetic structure factor can be written as

Here the summation is carried out over all uranium atoms with their posi-
tions given by ri within the unit cell. According to the assumption made above
all other atoms in the unit cell do not contribute to the magnetization and there-
fore they need not be included in the summation in (77). Moreover, all uranium
atoms are on crystallographically equivalent positions and their induced magnetic
moments are all equal. Thus with

the magnetic form factor reduces to
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The factor ∑  e'τ'ri is a known entity as all the parameters such as atomic positions
are known. Thus, this factor may readily be removed from (79). Thereby, the
magnetic structure factor is reduced to the magnetic form factor of the uranium
atom multiplied by a constant. The multiplicative factor in front of the magnetic
form factor is equal to the total ferromagnetic moment located on the -uranium
atom.

The magnetic form factor of the uranium atom is the Fourier transform of
the atomic magnetization density. These densities have been calculated for the
various states of ionization of the free uranium atom, and the relevant functions
have been tabulated in the literature [14]. Assuming that three 5f-electrons are
present on the uranium atom and that crystal field splittings and hybridization
effects can be neglected, the magnetization density of the uranium atom retains
its spherical symmetry within the crystalline environment. A magnetic form factor
which is evaluated under these assumptions is known as a form factor in dipole
approximation.

Using the dipole approximation for the 5f-electron magnetization there re-
mains only one free parameter to be determined by comparison with experiment.
The unknown entity is given by the size of the magnetic moment located on the

• uranium atom. While the saturation magnetic moment of this configuration can
be calculated, the magnetic moment aligned by the external magnetic field and at
the relevant temperature may be substantially different from the total magnetic
moment on the atom. 'Thus, with the assumption of a localised magnetization
density centred on the Uranium atom and within a dipole approximation for the
magnetization distribution a one-parameter fit has to be carried out.

The results of such a fitting procedure are shown in Fig. 8 and Fig. 9. The
continuous line corresponds to the magnetic form factor of the uranium atom
while the data points are given by the measurements on UBe 13 and UPt3. While
the experimentał values of the magnetic form factor of UBe 13 are satisfactorily
reproduced by a form factor of the Uranium atom in dipole approximation, the
corresponding data points for UPt 3 show a significant scatter around the curve of
a spherically symmetric magnetization distribution.

In order to improve the agreement between calculation and observation for
UPt3 one may try to relax the condition of a spherically symmetric magnetization
distribution and model the form factor within a crystal field model. However, even
within this less stringent model the agreement of an improved model calculation
and experimental observation is poor. It turns out that the scatter of the data -
points in Fig. 9 is too varied to allow modelling using only an uranium atom
magnetization.

In order to obtain more insight into the reason for such a discrepancy and to
be able to identify the various contributions to the magnetization it is informative
to study the magnetization density in real space. Using the measured magnetic
structure factors in the Fourier series, the real space magnetization densities have
been constructed for both, UBe13 and UPt 3 .

The magnetization density in UBe13 is shown in Fig. 10 as a projection onto
one of the faces of the cubic unit cell. The number of the Fourier coefficients and the
other conditions for obtaining the plot are the same as the one for the projection



Magnetic Form Factor Measurements ... 	 75

of the nuclear density in Fig. 5. It is seen from the magnetization projection that a
magnetic density arises at the positions of the uranium atoms. No other structure
or detail is visible within the unit cell. In particular, there is no localised magnetic
contribution centred at the Be atom positions.

This result is not surprising in view of the fact that the magnetic form fac-
tor fit in Fig. 8 is a good description of the experimental data. The magnetization
density in real space is therefore dominated by the 5f-electron magnetization. How-
ever, for low scattering vectors a systematic deviation is found in Fig. 8 between
the observed data points and the calculated form factor curve. This deviation at
low values of sin 0/a is attributed to a polarization of the conduction electrons.
As discussed in some detail in Sec. 3, the conduction electron contribution will be
sharply peaked at τ = O and quickly fall to zero as the size of the scattering vector
increases. The Fourier transform is not expected to show significant structure.

In order to illustrate the effects of an incomplete Fourier series a magneti-
zation density map is constructed with one component missing. Such a picture is
shown in Fig. 11, where the component corresponding to τ = (2, 2, 0) has been
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reduced by a factor of two. The nuclear structure factor of this reflection is acci-
dentally very small, as a consequence of which it is experimentally more involved
to obtain accurate values of the flipping ratio. This is due to experimental difficul-
ties and uncertainties which arise in an accurate determination of the background
contribution for weak reflections. For reflections with a low nuclear structure factor
other contributions such as those due to multiple scattering may seriously influence
the intensity of the Bragg reflection. Thus, the flipping ratio of a weak reflection
may be systematically estimated as being either too low or too high. For a mag-
netization density map which is constructed using this coefficient in the Fourier
series the resulting magnetization density may show additional structure which
arises from the difference between the correct and estimated magnetic structure
factor. Figure 11 shows magnetization density for the magnetic structure factor
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with the "correct" coefficient of the (2, 2, 0) reflection being multiplied by 0.5.
This reflection and the ones obtained from it by the application of the symmetry
elements of the structure contribute a term proportional to cos (4 π/α(r x + ry)) to
the projection of the magnetization density.

In order to see whether or not such structure in the magnetization density
is a "reap' effect or whether it arises due to some missing or wrong Fourier com-
ponents one may calculate the magnetization using a simple model such as the
uranium 5f-electron magnetization only and employing the dipole approximation.
This modeł may then be used to construct the magnetization density in real space
by a Fourier transformation and with the same coefficients in the Fourier trans-
form as used in the experimental series. Such a density map should then show only
localised magnetic contributions. Any deviation from this must be attributed to
an effect of the Fourier series. Alternatively, one may study the difference map,
which is obtained by Fourier transforming the difference of observed and calcu-
lated magnetic structure factors. Both procedures enable to identify the origin of
the structure which is found in the magnetization density maps.

Figure 12 shows the magnetization density for UPt 3 as a cut through the unit
cell at a height of z = 1/4. The positions of the atoms in this plane are indicated
in Fig. 7. When studying the magnetization density of Fig. 12, the first impression
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is one of a complex magnetization distribution with various contributions which
are located at different positions in the unit cell.

Around the position of the uranium atom there is indeed a significant and
welł localised magnetization to be found. The radial extent of the 5f-electron wave
functions is consistent with the innermost magnetization distribution. However, in
addition to the magnetization of the 5f-electrons a magnetization contribution is
identified which arises from 6d and 7s electrons of the uranium atom. The sym-
metry of the 6d-electron wave functions is reduced due to the point symmetry of
the uranium location. The threefold axis of rotation gives rise to the crystal field
splitting of the 6d-electron levels. This is the reason for finding the three regions
of positive magnetization density at a distance of ≈1.2Aof the U atom position.
Both the radial extent of the wave function and the fact that it is split into crys-
tal field levels uniquely identify this magnetization distribution as arising from 6d
electron. For s or p electrons no splitting is expected to occur for the site sym-
metry of the uranium atom. The remaining negative magnetization distribution is
attributed to a 7s-electron polarization, with the 7s-electron spin being orientated
antiparallel to the direction of the 5f-electron magnetic moment.

The remaining magnetization distribution in the unit cell arises due to a
magnetic polarization of the platinum electrons. The Pt triangle within the unit
cell is seen to carry a significant part of the magnetization density. The electrons
have to be considered delocalised. The overlap between neighbouring Pt atom
wave functions is significant, as a result of which the magnetization distribution
is severely distorted. The appearance of the magnetization density does not any
more resemble the one expected for atomic wave functions.

In order to model the magnetization density for UPt 3 all those electronic con-
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tributions identified above have to be included. The model of a localised moment
magnetization can be modified to include the localised magnetization contributions
of the uranium atom. It suffices to use free atom wave functions. For the mod-
elling of the magnetization density within the triangles of Pt atoms the overlap
of wave functions has to be included. This requires a band structure calculation.
Until now, however, a theoretical prediction of the magnetization density in UPt3
based on the band structure calculation has not been reported in the literature.

Bearing these comments in mind a model calculation has been carried out
using free atom wave functions for both, uranium and platinum contributions. By
using such a model the agreement with observation could be significantly improved.
The agreement is considered fair, however, with the main shortcoming of such
a calculation being given by the inability to adequately model the delocalised
magnetization density around the Pt atoms.

5. Discussion

The results of the form factor measurement of UPt3 illustrate quite nicely
the power of the technique of spin polarised neutron scattering. The magnetiza-
tion density as presented in Fig. 12 reveals details of the electronic wave functions,
their radial extent and the angular dependence. It is therefore a decisive test for
any band structure calculation, whether or not such details. of the electronic wave
function are reproduced by the calculation. It was pointed out in the introduc-
tion that this type of measurement probes the ground state of the system. The
perturbation which is introduced by the application of a magnetic field is of the
order of 10 K. This energy is much smaller than the energies involved in typi-
cal experiments in spectroscopy, or the accuracy of energy values obtained by a
band structure calculation. For the purpose of comparing the magnetic form factor
measurements with results of band structure calculations the ground state wave
function may be used for the calculation of M(r).

In general, band structure calculations are aimed at a determination of the
eigenvalues of the hamiltonian of the system. This results in the energy spectrum
as given by the band structure and the electronic density of states. In order to
obtain good estimates for the energy eigenvalues of the system it is generally not
required to have the exact wave function which is an eigenstate of the Hamiltonian.
A method due to Ritz is a well known procedure in quantum mechanics whereby
a trial wave function with some free parameters is used in a variational procedure
to obtain estimates of energies for the system under investigation. Quite different
wave functions may lead to very similar estimates for the energies. It is not essential
to have the correct electronic wave function for obtaining good estimates for the
band structure.

However, for obtaining a complete solution of a quantum mechanical system
the eigenfunctions have to be determined. In this respect a comparison of calcu-
łated wave functions with the results of magnetic form factor measurements can
be helpful. Spin polarised neutron scattering experiments are capable of yielding
very detailed information on the wave functions of some electrons in the system.

In addition to providing a challenge for band structure calculations the mag-
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netization densities may yield qualitative information on the degree of localization
of electrons in metals and on chemical bonding in ionic compounds. A large num-
ber of systems have by now been investigated with this technique. The interested
reader is referred to a compilation of references for magnetic form factor mea-
surements (Boucherle [21]), which contains a large number of systems with varied
physical characteristics. The detailed interpretation of experimental results also
depends to a large degree on the systems which are considered. Here only the ex-
ample of a metallic system with localised and delocalised electron magnetization
contributions has been considered. For a more detailed discussion the literature
[22-26] may be consulted in addition to the text books on neutron scattering [1-3].

6. Conclusions

An introduction has been given to the technique of spin polarised neutron
scattering with an application to magnetic form factor measurements. Some exper-
imental questions have been discussed. For the interpretation of the magnetization
density two models have been considered: a localised moment system and a delo-
calised electron system with the electron described by free electron wave functions.
The various points raised in these discussions have been illustrated with the experi-
mental investigation of the heavy fermion systems UBe13 and UPt3. These systems
exhibit the full spectrum of electronic magnetization distributions in metals. For
electrons with localised characteristics it includes contributions from 5f-electrons
of the uranium atom with the magnetization having spherical symmetry, crystal
field split contributions of 6d-electrons and 7s-electron magnetization with no an-
gular dependence. Delocalised electron contributions are found in magnetization
density in real space.

The experimental technique of magnetic form factor measurements by neu-
tron scattering is a powerful tool, which may yield detailed information concerning
electronic wave functions. This information is complementary to other experimen-
tal techniques which investigate the energy spectrum and band structure of the
solid. Magnetic form factor measurements are also a challenge to theory and band
structure calculations. A closer comparison of the magnetization density in real
space with electronic wave functions obtained in band structure calculation is
highly desirable.
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