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We discuss the limitations of the local density approximation for high-
-temperature superconductors and related to them parent antiferromagnetic
insulators. The calculated band-gap accuracy is pointed out for two cases:
C60-FCC and YBa2Cu3O6. We also compare the results for parent CaCuO2
and NiO systems, as well as discuss the role of gradient and self-energy (GW)
corrections for the Mott insulators.
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1. Introduction

The discovery of high-Tc superconductors [1] has generated research interest
on an unprecedented scale. Thousands of papers have been published with many of
them contradicting each other. After several years of intensive research we still do
not know what is the mechanism leading to transition temperature far above those
previously considered possible for superconductivity. Ironically, this new materials
are so complex that even electronic structure of the normal state is not fully
understood. The spin polarized version of band theory is not sufficiently accurate to
predict the observed antiferromagnetic insulating state for undoped phases which
are insulators (and not superconductors). There are several review articles [2] now
available which discuss progress in electronic structure calculations. We will not
discuss all those contributions but would like to focus on what are the major
difficulties in this field.

In the present work we will focus on the limitations of the LDA (local density
approximation) band structure calculations. One fundamental difficulty is that all
electronic structure calculations are based on the one-electron approximation. This
approximation works very well for metals but for nonmetals, where the screening
is poor, one-electron excitation energies may be different than the spectrum ob-
tained from one-electron calculations. In the calculations of the screening effect a
plane-wave basis set is used (due to simple form of Coulomb's potential in this
representation), which for d electrons of transition metals leads to large matrices
and makes accurate calculations almost impossible. At present we believe that at
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least for phases which are insulating some corrections beyond standard electronic
calculations are necessary. The self-interaction corrections (SIC) have been applied
to La2CuO4 and transition metal oxides and stable antiferromagnetic solution has
been found with the band gap in agreement with experimental results [3]. The SIC
are however not well defined in solids and therefore in the present work we will
focus on another possible corrections to LDA, i.e. GW and gradient corrections.

2. The LMTO-ASA method

The linear muffin-tin orbital atomic-spheres approximation method [4]
(LMTO-ASA) which is used widely for electronic structure calculations is in fact
a first-principles tight-binding method. The assumption is that the whole space
can be filled with overlapping Wigner—Seitz atomic spheres (ASA), so that the
total unit cell volume is conserved. This leads to enormous simplifications, but
for open structures, empty spheres are often used to improve the shape of the
potential. Also, the so-called combined corrections are used to reduce the error
of shape approximation [4]. Since we assume spherical shape of the potential, a
minimal basis set can be used which means one orbital per lm quantum numbers.
The Taylor expansion can be used for energy dependence and our basis functions
have a simple form

By assuming that kinetic energy is zero at the atomic spheres boundaries, we can
perform transformation to the basis sets in which our Hamiltonian factorizes into
energy dependent part and structure part, energy independent. This structure
dependent part, called structure constants, can be calculated only once in the
iterative process shown in Fig. 1 and speeds up calculations enormously.

To initiate our calculations for solids, we use the atomic charge density as
a starting point from which we calculate Hartree's part (V) of the potential us-
ing Poisson's. equation. For the nonlocal part of the potential, also so-called ex-
change correlation potential (Vxc ), we use local spin density functional (LSDF)
description. According to LSDF approximation, V xc is only dependent on the lo-
cal density and can be calculated from the exchange correlation energy density of
the homogeneous gas [5]. This approximation is formally justified if the electron
density is slowly varying on the relevant length scale (the Fermi wavelength or
the Thomas—Fermi screening length). Then we can write the ScHródinger equation
in a matrix form using our basis set representation and the problem reduces to
finding eigenvalues and eigenvectors as it is shown in Fig. 1. This is the part of the
calculations where access to sufficient memory is essential. The required memory
is proportional to the square of the number of atoms per unit cell multiplied by
the number of basis functions. We reduce further requirements for memory by
freezing the core and semicore electrons and relaxing only valence electrons (min-
imal basis set) with wave functions expanded up to l = 2 (d electrons). Then we
can calculate the new charge density and perform iterations until self-consistency
is obtained (Fig. 1). Calculations sometimes are slow to converge and the łow
mixing parameter (e.g. 1% of new charge density added to the old one as an
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input to new iteration) is necessary to use. 'I T ie more sophisticated methods of
mixing charge densities might be helpful and are called convergence accelerators
[6]. Our calculations are self-consistent and include all quasi-relativistic effects ex-
cept spin—orbit coupling [4]: The exchange—correlation energy is derived from the
Von Barth—Hedin or the Vosko—Wilk—Nusair approximation [5].

The LMTO-ASA (linear muffin-tin orbital atomic-spheres approximation)
method has been used successfully in explaining electronic and magnetic properties
of metals and their alloys [4]. For example, the calculated moment in metallic nickeł
[7] was in agreement with experiment to within 0.01µB. It was also predicted
that nickel loses magnetic moment during hydrogenation. For the new high-Tc 	•
oxides less approximate methods such as the high precision full-potential linearized
augmented plane wave (F LAM) method [S] should better reveal the details of the
electronic and magnetic structure, but the important features in these compounds
can be obtained by LMTO-ASA and similar methods with much less computer
time required for the computations. The LMTO-ASA method is much faster than
most other methods and thus permits the use of a larger number of "k" points in
the Brillouin zone which is essential [9] for magnetic studies in these compounds.

3. LDA electronic structure calculations for C60-FCC (Rb)

The discovery of the truncated-icosahedron structure of the C60 molecule
[10] initialized a new area of research on these football-like molecules. Recently it
has been found that this interesting molecule can form crystals. and when doped
these crystals become high-temperature superconductors [11].
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We performed self-consistent first-principles electronic structure calculations
using linear muffin-tin orbitals (LMTO's) in a tight-binding representation (TB)
[12]. Since C60-FCC has a very open structure (lattice constant equals 26.778 a.u.
[11] while C—C bond lengths are: 2.702 a.u. for 5/6 edges and 2.646 a.u. for 6/6
edges [13]), it is very important to choose empty spheres properly. In our calcu-
lations [14] we chose a minimal number of spheres (76 atomic spheres). We chose
one sphere (r = 5.855 a.u.) in the octahedral position where Rb is located in
C60Rb-FCC and two empty spheres (r = 5.1 a.u.) in tetrahedral position as well
as one inside the C60 molecule (r = 5.586 a.u.). Additionally outside Co molecules
twelve empty spheres (r = 2.6 a.u.) were located in the middle between the pen-
tagon and hexagon faces of nearest neighbor C60 molecules. The atomic sphere
radii of carbon site were equal to 1.7 a.u. and we assumed that all carbon sites are
equivalent. We included in our calculations s, p, and d electrons with downfolded
[15] p and d electrons on empty spheres. The values of E„ were chosen at the
center of gravity of the respective occupied band. On carbon and rubidium atoms
(an empty sphere in the octahedral site in C60-FCC) only d electrons were down-
folded. On the large sphere inside the C60 we downfolded all electrons. In Fig. 2

the LMTO-ASA band structure of C60-FCC is presented for the region close to
the Fermi energy. The degeneracy of h u energy level is lifted and we have splitting
of h„ band at T point. The unoccupied state t1u is not split at T point. Our calcu-
lated energy gap [14] is smaller than obtained in earlier calculations [16] (1.5 eV)
and is equal to 1.17 eV. This is due to the inclusion of d electrons hybridization
which reduces the energy gap. If we do not include d orbitals contribution, the
energy gap widens to 2 eV. It is worth to notice that in this case less accurate
calculations are giving a better agreement with experimental value of band gap
3.5 eV [17] and therefore we cannot judge quality of calculations by their agree-
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meat with experiment! More recent calculations [18] show a direct gap of 1.23 eV
and, as it has been discussed earlier, these results are within 0.1 eV agreement
with other more recent LCAO calculations and recent plane-wave pseudopotential
calculations [18]. In Fig. 3 we show the charge densities for undoped C60-FCC.
The electron charge density is very inhomogeneous and localized on the surface
of the sphere. We suggest that the sensitiveness to approximation is due to the
inhomogeneity of electron charge density.

4. Electronic structure and magnetism of YBa 2 Cu3 O 6 and YBa 2 Cu3 O7

It is obvious that one-electron theory cannot tell so directly about possible
mechanism of superconductivity, but it might answer to important questions such
as what is the nature of carriers in this new material. Our first calculations [19]
for YBa2Cu3O6+, were intended to solve this problem. It is interesting that as
the oxygen content is varied from YBa2Cu306.9 to YBa2Cu 3 06.24, the material
changes from an orthorhombic superconductor to a tetragonal antiferromagnetic
semiconductor [20]. In order to aid in our understanding of the new 90-K super-
conductors, we performed band structure calculations for both related compounds
in order to identify the structural and electronic features responsible for the super-
conductivity. Since we cannot perform proper band structure calculations for these
compounds without using supercells with hundreds of atoms, we made calculations
in each case for the unit cell with the closest total number of oxygens to the ac-
tuał concentration, i.e., YBa2Cu3O7 and YBa2Cu3O6. An interesting comparison
can be made by examining separately the d and p electrons contributions to the
density of states as shown in Fig. 4. It is important that for YBa 2 Cu3O7 there
is a large contribution due to p electrons (top Fig. 4) around the Fermi energy
in contrast to YBa2Cu3O6 (bottom Fig. 4) where the d character of the electrons
dominates Fig. 4. These results were the first theoretical calculations indicating
that p character of the electrons around Fermi energy in superconducting phase is
important.

We note that many of the models for high-Tc superconductivity which have
appeared [21], involve a new mechanism for superconductivity based on magnetic
interactions between the copper atoms.
. Investigation of possible magnetic phenomena is complicated as it is now

known that the local spin density functional approach does not account for spon-
taneous magnetic ordering in these compounds and spin-non-polarized calculations
predict metallic properties for the related insulators [22]. It is important to men-
tion that for these materials which have very nonuniform charge densities [2] (like
FCC-C60) the details of structure around the Fermi energy might be sensitive
to approximations, such as the values of the atomic sphere radii (influences the
Madelung energy contribution), E„ value (changes the initial hybridization), etc.
We find that, in the LMTO-ASA approximation, the initially chosen E„ values
for ir electrons of yttrium can change the unoccupied band position by several eV.
This is probably the reason why the position of the unoccupied bands in an earlier
LMTO-ASA calculation [23] is much lower than in our LMTO-ASA and in highly
precise FLAPW calculations [24]. In later work by these authors [25], the position
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of the unoccupied bands above the pdσ antibonding band agrees with our calcula-
tions. It is possible that too low position of the unoccupied bands might suppress
the gap at the Fermi energy. Expansion about the center of the band (not as in
the conventional way around the center of gravity of the band) should give for a
half-filled band a better description around the Fermi energy than the expansion
around the center of the occupied portion. In our unconventional LMTO-ASA
band structure calculations [9] (with E„ being at the center of the band) we had
to assume a large value for E„ for p electrons of Y(5p) and Ba(6p), and s elec-
trons of 0(3s) to avoid ghost bands [4] in the minimal basis set approximation
[4]. We also demonstrated that by performing forced antiferromagnetic ordering
calculations for a half-filled band, an antiferromagnetic "Feierls-type gap" or as
more commonly called the Slater gap [26] opens up at the Fermi energy due to
the doubling of the unit cell. We called the gap a "Peierls gap" as the effect of
meta-antiferromagnetic ordering on the electronic structure is analogous to the
Peierls lattice distortion effect. As soon as the gap opens in the iterative process,
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the density of states close to the gap boundary rises due to flattening of the bands,
and the energy łowers. As a result the external splitting can be removed and the
antiferromagnetic ordering becomes stable. Thus in this case the insulating state
can be obtained in the LSD approximation provided an antiferromagnetic phase
can be created.

The consequences of the sharpening of the density of states around the gap
for superconductivity should be noted. The gap produced at the Fermi energy is
small (≈ 0.1 eV) due to a low value of the local moment on the Cu2 sites (in
Cu-02 plane) (≈ 0.3µB). Since we neglected spin—orbit interaction in our calcu-
lations, the absolute direction of the moment is not defined. We predict that as
long as there is antiferromagnetic coupling between spins of copper atoms, the
material stays insulating. By variation of the band filling due to doping, the Fermi
energy is lowered and so, as soon as the metallic state is approached, the łocal
magnetic moment disappears. This stabilization of the magnetic ordering due to
the existence of the gap at the Fermi energy explains the strong sensitivity of the
magnetic moment to doping which would not be true for spontaneous antiferro-
magnetism. In a way we are lucky that LSD approximation predicts metallic state
in those compounds, since otherwise we would have to perform calculations for a
large supercells (due to small doping in high-Tc superconductors) to destroy the
magnetic ordering and to obtain the metallic state.

The electronic structure around the Fermi energy for high-Tc superconduc-
tors can be well described in the tight binding scheme with consideration of only
p electrons of oxygen and d of copper. It has been demonstrated [27] in this model
that the (110) nesting (required for stability of antiferromagnetic ordering) is only
present when we neglect second neighbors interaction and when it is included, we
have (100) and (010) nesting which is once obtained in band structure calcula-
tion for most high-TC superconductors. Thus observed antiferromagnetic ordering
cannot be obtained in tight binding scheme (nσta Gene equivalent to LMTO-ASA
approximation) when parameterization from self-consistent LSDF calculation is
used due to overestimation of overlapping parameters in this method. This indi-
cates that the spontaneous antiferromagnetic ordering cannot be created by only
increasing artificially the exchange correlation potential, but the corrections lead-
ing to the reduction of overlapping integrals are necessary as well.

The only way of creating antiferromagnetic ordering with the present param-
eterization of band is to create it by applying a large external antiferromagnetic
fields. In our calculations we apply this field (0.05 Ry-0.1 Ry) to all atoms with
the restriction that the sign of the field was opposite on nearest neighbor cop-
per atoms. Hundreds of iterations (initially with small number of k points) were
performed until gap opened up around the Fermi energy. Then external field was
switched to zero and further iterations were performed with a large number of
k points and low mixing of new (5%) and old charge density. In contrary to our
earlier calculations [19], in spin polarized calculations we use empty spheres at
oxygen vacancies (no orbitals were assumed in the empty spheres except from
overlapping spheres). There is also evident analogy between our calculations and
those previously performed for the metamagnetic [28] state in Pd. In both cases a
łarge number of k points were needed in order to eliminate artificial fluctuations
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at the Fermi energy. We used 108 k points in the irreducible wedge of the Brillouin
zone.

At this point we would like to comment about the sensitivity of antiferro-
magnetic solutions to the number of k points employed. According to Guo and
Temmerman [29] the moment for the antiferromagnetic solution in La2CuO4 de-
creases smoothly for increasing number of k points and the opposite behavior is
found for La2NiO4 where the moment is present only for more than 105 k points
[29]. We do not find for YBa2Cu3O6 a smooth dependence of the value of the
moment on the number of k points. The value varies quite randomly from higher
to lower values for small numbers of k points and becomes relatively stable for 108
k points where for example there is essentially no difference (< 0.01µB) between
our calculations obtained with 108 and 135 k points. The magnetic moment for
the antiferromagnetic solution is more sensitive to the number of k points than
for the ferromagnetic solution. This is mainly due to interpolation errors for spin
up and down electrons which in the antiferromagnetic case do not subtract as in
the ferromagnetic case where the spin up and down electrons density of states are
almost rigidly shifted and the detailed features of .the density of states are not
important.

5. Gradient corrections for the LSD exchange potential

In this section we will review our work [30] on gradient corrections. The local
spin density functional (LSDF) method has been remarkably successful in describ-
ing fundamental properties of solids and molecules [31]. However, very early on
it was pointed out [32] that for systems with inhomogeneous charge density some
modifications might be necessary. Many different modifications have been pro-
posed and tested on various systems [31]. We would like to focus on a relatively
simple generalization of the LSDF method, namely the so-called gradient correc-
tions [32-34] to the exchange or exchange—correlation energy. A number of gradient
corrected energy have been proposed [35-38] in recent years; many of these for the
exchange energy (Exg) have been in polynomial form in order to have a relatively
simple form for the gradient corrections to the exchange potential (Vxg ) which is
calculated as a functional derivative of Exg :

where n is the electron density.
The cost of this simplicity was the need for several fitting parameters [36, 37].

In the present work we calculate gradient corrections to Vxg from Becke's re-
cently proposed formula [39]. His latest expression has been found to fit well the
Hartree—Fock exchange energies of a number of atoms and to fulfil the exact asymp-
totic behavior of the exchange-energy density. However, as we will show later this
proposed expression leads to a complicated formula for Vxg but has the advantage
that it contains only one fitting parameter which seems to be independent of the

• atomic number Z [38]. On the other hand, it has the disadvantage that for large
r, Vxg behaves as r-2 instead of the desired r -1 .

•
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The functional derivative of Exg can be rewritten as follows [391:

where ∂nx = ∂n/∂x, etc. For simplicity we shall either treat, systems which are
spherically symmetric (e.g. atoms with filled subshells so that the ground state is
spherically symmetric) or make this approximation around atomic sites (atomic
sphere approximation, ASA) and angularly average the electron densities in a
similar manner. Many methods for electronic structure calculations in solids use
the spherical, centrał field approximation (only r dependence) for the potential
as for example in discussed in Sec. 2 the LMTO-ASA method [4]. Due to the r
dependence of the spherically-averaged electron density, expression (5.2) for the
functional derivative simplifies to

We assume that Exg is only dependent on n o and x v where σ- is a spin index
and

is a dimensionless variable and gσ = ∂n,/∂r. Then we obtain the following ex-
pression for the functional derivative:

where sσ = ∂g

σ

/∂r. Then by substituting Becke's expression for Exg [38]:

and performing the differentiation, we obtain an explicit expression for the gradi-
ent-corrected exchange potential corresponding to (5.6):

As one can see, the expression (5.7) is quite complicated, but has the advantage
that the only unknown parameter is β and for many atoms β = 0.0042 a.u. [38]
has been found to work well. This implies that ,β can be kept constant for all
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atoms. In contrast to the energy density (5.6), this Vxg has a very complicated
form and contains the second derivative of charge density (s0 ). The latter leads
to inaccuracies at the boundary of atomic spheres. In addition, the formula (5.7)
does not have the correct asymptotic inverse dependence on r as does the energy
density (5.6) but rather r -2 .

Since in one-electron band structure calculations the primary quantity is the
potential and not the energy density, we propose that the gradient correction of the
potentiał should have a functional form similar to the energy density expression
proposed by Becke while the energy contribution due to V g is expressed in the
following form:

Next, by comparing the asymptotic limits of the energy density (5.6) and the
expression (5.7) for small xσ and large r we introduce 2/3 as the coefficient of
proportionality in the expression for V g:

The above potential has the same limit for slowly varying electron density as
expression (5.7) and has the proper 1/r dependence at infinity.

The value of the constant y in this expression may not be the same as Becke's
(,3 = 0.0042 a.u. [38]) and would need to be determined. In the numerical work

below, we make the preliminary assumption that they are the same.
The value for forfor infinite systems such as solids is an open question and

could be determined by means of numerical calculations for a number of systems.
However, the fitting of the gradient corrections for finite systems was performed in
a semiempirical manner by adjusting toto the known Hartree—Fock solutions [38].
For solids the Hartree—Fock approximation does not work well, thus in practice
gradient corrections must be introduced empirically. However, the use of the atomic
values has the advantage in the calculations of dissociation and binding.

The recent calculations [40] of gradient corrections to the total energy of K,
Ca, V, Fe, Cu show a promising improvement and in particular solved the problem
of stability of bcc structure versus fcc structure where the LSD approximation had
difficulties. However, the differences between energies for different crystal struc-
tures are very small and gradient corrections of the order of 10 meV might play a
crucial role for stabilization. Unfortunately, they are not large enough [30] to influ-
ence the value of the magnetic moment on Ni in NiO (Fig. 5) or solve the problem
of stabilization of the magnetic ordering in the semiconducting phases related to
high-Tc superconductors, e.g. YBa2Cu3O6 (Fig. 6) where the local charge density
has been calculated using the LMTO-ASA method [4]. The calculated moment on
nickel in NiO is one-half experimental value and in the first approximation an ex-
change potential twice as large would be needed to describe the moment correctly.
After we completed our calculations we learned that the magnetic moment on iron
has been calculated with several gradient correction schemes and in agreement
with our conclusion the change in the moment was very small [41].
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In the present work we are mostly interested in magnetism and therefore we
discussed only exchange gradient correction.
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6. The Slater versus the Mott insulators

The discovery of new high-Tc superconductors has redirected attention to the
class of materials called the Mott insulators [42], i.e. "magnetic insulators" in which
(in contrary to the Slater insulators) local magnetic moments and the insulating
nature of the state persist above the magnetic transition temperature [42]. Mott
[42] argued that band structure calculations might not be applicable in systems
where the on-site Coulomb energy is large in comparison to the bandwidth, i.e.
unusually strong localization effects would favor a localized (cluster) description
over an itinerant (band) description. One class of such materials are oxides of
transition metals, known for 50 years as difficult to describe by band structure
calculations, due to unusually strong correlation effects [42]. The methods used to
calculate electronic structure have improved in recent years and band structure
calculations have successfully shown that NiO and MnO are antiferromagnetic
Slater insulators [43], albeit with too small band gaps.

In this work we discuss the difficulties of obtaining magnetic ordering within
the one-electron approximation for copper and nickel perovskites [9, 22, 29]. We
find that it is much easier to obtain magnetic ordering in compounds where cop-
per is replaced by nickel, because d electrons of nickel have higher energy than d
electrons of copper and p electrons of oxygen. La2 CuO4 appears to be unstable
in the antiferromagnetic phase unless a gap is forced around the Fermi energy
[22, 29]. The calculated moment on copper sites is very low in this case (0.136p$
[22b] or 0.16µB [29]). The calculations [22a] for K 2 CuF4 show that magnetic order-
ing on copper—fluorine planes is possible but the calculated moment on copper is
lower than that experimentally measured by a factor of two. At low temperatures
La2CuO4 and La2NiO4 are similar with respect to both their crystal structure
(tetragonal/orthorhombic) and their magnetic properties (antiferromagnetism).
However, in high temperature paramagnetic state La 2 NiO4 becomes metallic [44]
in contrast to La2CuO4 and indicates that these compounds are Slater's and Mott's
insulators respectively, because the first becomes metallic at high temperature
while the second stays insulating. As we demonstrated in our previous paper [45],
antiferromagnetic ordering can be obtained easily in nickel perovskites. Two inde-
pendent studies [29, 46] support our results while another one [47] claims that a
scaling factor (1.5) in the potential is necessary in order to obtain stable antifer-
romagnetic ordering. Thus even for the Slater insulators there are discrepancies in
the results due to the approximations used.

Another intriguing question is why NiO (a Mott insulator) should be so much
different from La2NiO4 (a Slater insulator). The formal ionicity on Ni is the same
in both compounds. One possible difference is the presence of the d band of La
in La2NiO4 . The La d band is closer to the d-electron band of the weakly bound
electrons of Ni [45] than to those of Cu, where the analogy between La2CuO4 and
CuO is commonly accepted.

Although it was thought originally that the local spin density (LSD) func-
tional method should be used only for materials with slowly varying electron den-
sities [48], there is evidence that it is successful for many systems which do not
obey this constraint. The new high-Tc materials are an example of inhomogeneous
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systems where a high charge density is found around the copper oxide planes which
decrease rapidly with increasing distance from the planes.

In Table we summarize results of our LMTO-ASA calculations [49] for several
cuprates and nickelates. There is no significant difference between the values of
the Stoner parameter I for the Mott and the Slater insulators. The calculated gap
is of the order of a tenth of an eV which is one order of magnitude too small for
the Mott insulators and about right for the Slater insulators. Since the calculated
gaps for semiconductors do not agree with experimental data unless self-energy
corrections (e.g. in the GW approximation) are introduced [50], the possible role
of such corrections for the Mott insulators requires investigation [50] and will be
discussed in Sec. 7.

7. LDA versus HF electronic structure calculations
Recently suggestions have been made that self-interaction corrections (SIC)

in the local density approximation (LDA) may significantly influence the com-
puted electronic structure for high-Tc superconductors as well as other transi-
tion metal oxides [3]. Since SIC are naturally included in the Hartree—Fock (HF)
method, studies have been carried out by comparing HF and LDA computations
for NiO and CaCuO2 (so-called parent of high-temperature superconductors) due
to their relatively simple crystal structure [51]. We employed, described in Sec. 2,
LMTO-ASA method in our LDA calculations [4]. In our 11F calculations we used
ab initio HF method with the Gaussian-type orbitals [52]. In HF approximation
correlation is not included at all, while for the LDA, correlations effect for ho-
mogeneous electron gas is included exactly. However, very inhomogeneous charge
distribution in principle invalidates the approximations which are made.

In Fig. 7 we present the electron charge density for NiO calculated within
the LDA LMTO-ASA approximation. High charge density of d electrons on nickel
atoms is visible. These are also electrons which contribute mostly to the magnetic
moment on nickel. There is no problem to obtain stable antiferromagnetic ordering
in NiO within LSDF method, but as mentioned already the moment is too small
(1µB). When we reduced lattice constant as shown in Fig. 8, the moment was
reduced even further due to the delocalization of d electrons. In practice, this
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effect can be observed by applying large pressure as indicated in Fig. 8. It would
be interesting to compare those results with spin polarized HF but at the moment
we can only compare spin-non-polarized HF and LDA calculations.

In Figs. 9 and 10 we present spin-non-polarized band structure calculations
for NiO and CaCuO2. The overall shape of bands is similar in both methods of
calculations but the bandwidths are different by a factor of two and for example the
bandwidths of antibonding bands crossing the Fermi energy are correspondingly
for NiO 6.8/2.7 eV and for CaCuO210.8/4.1 eV. It is well known that using the
HF method (due to the non-local exchange term), the calculated band structure
for metals, where screening is very important, is about twice as wide as that
determined from experiment. On the other hand, in LDA, SIC are not properly
included and might lead to the relative shift of bands with different localization.
The most significant difference between the HF results and the LDA results is that
it gives a larger splitting between bands which have different localization levels as
for example the d—t2 g and d—eg bands in NiO. As a result of it the lowest energy
band in NiO using HF calculations is d-1 25 while from LDA calculations it is a p
band.

It was suggested [43] that the use of the spherical potential approximation
might be a cause of the underestimation of the magnetic moment but full potential
linearized augmented plane wave (FLAPW) method calculations [53] discussed
herein indicate that the moment on nickel is about the same (1.03µB) as in previous
calculations [43] and the band gap (0.02 Ry) is one order of magnitude smaller
than obtained in experiment.
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In Fig. 11 we compare spin-non-polarized LDA and Hartree–Fock (HF) re-
sults [52, 53] for NiO, with spin-polarized LDA 'calculations with and without as-
pherical effect. In the Γ-Z direction for NiO we present at the left, paramagnetic
Hartree–Fock and LDA — linear muffin-tin orbital atomic-spheres approxima-
tion (LMTO-ASA) results and on the right, spin-polarized TB-LMTO-ASA and
FLAPW spin-polarized calculations are shown where the opening of the gap due to
antiferromagnetic ordering is observed. In the paramagnetic plots, we represented
with broken lines the image of the bands in the reduced Brillouin zone scheme
for the antiferromagnetic state so as to make easier the comparison between the
spin-polarized and the spin-non-polarized calculations. It is worth noting that the
LSD approximation provides an insulating state for systems such as NiO, which
in this case is an antiferromagnetic band insulator [43]. However, the calculated
moment is about twice smaller and the band gap is an order of magnitude smaller
than the corresponding experimental values.
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We conclude that the correlation effect included in the LDA approximation
leads to substantial narrowing of the bandwidth (factor of two) but there are
other corrections as for example SIC or GW which might be significant for un-
derstanding electronic structure of transition metals oxides and high-temperature
superconductors.

8. Self-energy corrections within GW approximation
It is well known that for insulators and semiconductors the LSD functionał

method underestimates the insulating gap [54]. It is believed that the LSD ap-
proximation describes ground state properties well but fails to describe properly
experimental gaps where quasiparticle excitations should be taken into account
[54]. One of the differences between metals and insulators [55] is that for metals
the electron affinity and the ionization potential are the same and equal to the
chemical potential μ = ∂E/∂N, where E is the total system energy and N is the
total number of electrons. For nonmetals the energy difference between the electron
affinity and the ionization potential is nonzero [56]. The density functional theory
(DFT) band gap (the difference between the lowest unoccupied and the highest
occupied orbital energies of the N electron system) is not necessarily the same as a
quasiparticle gap between an excited state of N + 1 electrons and the ground state
of N electrons. In fact, it differs by the discontinuity in the exchange-correlation
potential when one electron is added. We consider this point further in our report•
on the so-called GW corrections within the LSD approximation [56]. Although the
GW formalism [56] has been known for a long time, it has not been used previously
for transition metal oxides due to large-scale computer requirements [53].
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Since the present GW correction calculations are based on the formalism
described previously for paramagnetic materials [57], only the most important
features and approximations will be noted here [53].

8.1. Dielectric matrix

The microscopic screening effect which results in a reduced effective Coulomb
interaction between electrons is fully described by the dielectric matrix. To calcu-
late this matrix, it is convenient to use plane waves due to the simplicity of the
Coulomb potential in this representation

where G and G' are vectors in reciprocal space, q is a vector in the first Brillouin
zone and δG,G, is the Kronecker delta. The number of vectors needed in reciprocal
space is dependent on the degree of localization of the electron wave functions,
e.g. more points are required for the more localized d electrons than for the more
extended p electrons. An alternative procedure has been proposed recently for
localized basis sets [58].

The dielectric function is calculated in the random phase approximation:
= 1— vP, where P is the bare polarizability to be calculated with the use of the

eigenstates and eigenenergies generated by the band structure calculations with the
FLAPW method [8] within the LDA. For convenience in numerical calculations,
the quantity u(q + G) = [v(q + G)]1/ 2 is introduced. Then, the dielectric function
is represented by the Hermitian matrix

where the c and v indices correspond to the conduction band (zero occupation)
and valence band (full occupation) respectively, a . is a spin index and E represents
the corresponding eigenvalues calculated within the FLAPW method (h E 1). The
number of eigenvalues used was limited to forty, since it has been shown [57] that
the error introduced should not exceed a few percent. Since these calculations are
very extensive, further approximations are needed. First, the above formula is used
only to calculate the static dielectric matrix εGG , (q,ω = 0).

To calculate the dynamical dielectric matrix (w ≠ O and real) a generalized
plasmon-pole model is used [57]:

where ε(q,ω) is the i-th eigenvalue of the dynamical dielectric matrix, and ωi(q)
is found from the required static limit, i.e. εi(qω )→. εi(q,0) when w → O.
The requirement of the proper high frequency limit leads to the expression [8]

ω2P/2Reωi=(q) forCi=(q)where the plasma frequency ω2p = 4πn for the uniform va-
lence electron density (n). Since electrons in NiO behave quite differently from a
free-electron gas, the calculations were tested by assuming two different plasma
frequencies, one with all-valence electron contributions and one with only d elec-
tron contributions taken into account. There was no much effect on the final value
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of GW corrections due to the choice of the plasma frequency and in the follow-
- 	 ing we present results with the plasma frequency corresponding to the all-valence

electron contributions.
The next approximation is to calculate the full dynamical dielectric matrix

from the above eigenvalues using eigenvectors (UGi(q)) of the static dielectric
matrix. This means that the off-diagonal elements will not be correct for higher
frequencies but for calculations of the self-energy the most important contribution
comes from ω < ωp [57].

We applied at this stage a correction where all conduction bands are shifted
by a constant amount in order to correct the LSD gap. Without doing this the
calculated dielectric constant would be much too large (40). The experimental
dielectric constant is 5.4 [59]. When using a gap shift (0.24 Ry) corresponding to
the experimental value of the gap the dielectric constant equals 12. A larger gap
shift (0.40 Ry) results in a better value of the dielectric constant: 8.7.

8.2. GW apprσximation

The next task is to calculate the corrections to the LSD gap. To do this, the
self-energy, calculated by including the first diagram of the expansion in terms of
the screened Coulomb operator (W), is of the following form (S E 0±):

where the Green function is calculated using the FLAPW eigenvalues and eigen-
vectors;

Su k σ is 0 — for valence band energies and 0+ for conduction band energies. The
screened Coulomb interaction W is

After substituting (8.5) and (8.6) into (SA) the real part of the self-energy can be
written as

where the notation due to Hedin [56] is used. The first part comes from the poles
of the Green function and the second part, the so-called Coulomb hole part, arises
from the poles of the screened interaction.

If enough G points are used and the same approximations are made in the
calculation of the LSD exchange—correlation potential and the self-energy, the
self-energy corrections (SEC) should be calculated as

where ∑nkσ(Enkσ) ≡ (nkσ|∑(Enkσ)|nkσ) and l Vxckσ E (nkσ|Vxc(p(r))|nkσ•). Since
we use only 111 G points and a very crude approximation for the self-energy, we
will make use of the fact that the exchange—correlation energy within the LSD
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approximation is equal to the self-energy calculated at the Fermi energy [60]. In
this way, the corrections can be calculated more accurately [611 as

-

To simplify the calculations, we used for the second term in expression (8.9) the
self-energy of the valence band which lies closest to the Fermi energy. This approx-
imation is probably not bad for d electrons which have energies close to the Fermi
energy. For p electrons it means just adding (renormalized by a constant value)
the self-energy onto the LSD exchange—correlation energy. In Fig. 12, the d bands
calculated with and without corrections are presented. A significant gap increase
can be seen in Fig. 12b.

Due to the extensive computer requirements of this method for d electrons,
the calculations of SEC were restricted to only four k points for each band, 40
eigenstates and eigenvalues generated by the FLAPW method and 111 points
in reciprocal space. The SEC corrections are not very sensitive to the plasma
frequency values used in the plasmon-pole model. It is important to use the same
model for both the self-energy and exchange—correlation potential so that the
accumulated error cancels in the calculation of SEC.

These preliminary results are very encouraging. The next question is how
to explain that the LSDF calculations underestimate the value of the magnetic
moment on the transition metal in oxides which is obviously ground state property.
The answer to this problem was proposed recently [62] by the introduction of the
so-called unoccupied states potential correction (USPC). It has been shown that by
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shifting unoccupied states to higher energies (the effect similar to GW corrections)
hybridization is changed and as a result of it the significant increase in the value
of the calculated magnetic moment has been found.

O. Summary
We were trying to demonstrate that the new, high-Tc superconductors and

related materials challenged the researchers working on LDA electronic structure
calculations. Even thought LSDF method showed the important features of these
materials like the anisotropic two-dimensional character, the importance of p elec-
trons of oxygen and d electrons of copper, more sophisticated calculations are nec-
essary. There is an indication that SIC, USPC and self-energy corrections might
be a possible improvement but this requires elaborated computer calculations.
Also, the problem of calculations beyond idealized crystal structure remains to be
addressed.
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