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EXCITONIC MOLECULE IN CuCl CRYSTAL
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The electronic structure of a biexciton is discussed while taking into ac-
count the detailed band structure of CuCl. The fine structure of the excitonic
molecule is clarified with the effective electron—hole exchange effect taken
into account beyond the effective mass approximation. The electron-hole
exchange interaction mixes the states of opposite parities with respect to
the permutation of electrons and holes. Two trial envelope functions, sym-
metric and antisymmetric under the permutation of two electrons or two
holes, were used in the numerical minimization of the ground state energy
of the biexciton. The obtained binding energy of the biexciton, as well as,
the ratio of the mixing of the trial envelope functions of opposite parities are
presented.

PACS numbers: 71.35.+z

1. Introduction

The biexciton as the bound state of the two Wannier excitons is described
in the effective mass approximation by the Hamiltonian, which differs from that of
the H2 molecule, among other terms due to the effective electron-hole exchange.
The electron-hole exchange interaction mixes states of opposite parity therefore
the states of the biexciton have no defined parity under separate permutation of
the spatial, as well as, the spin coordinates of identical particles, two electrons
and two holes, respectively. It was shown by Ungier [1, 2] and Hayashi [3] in the
previous papers that the ground state of the biexciton should be described by
twocomponent spatial envelope function, symmetric and antisymmetric, but not
by a symmetric wave function only, as in the case of hydrogen molecule. The pre-
vious papers refer to the simple band model neglecting the spin-orbit interaction
in semiconductor. Here we consider the biexciton in real CuCl crystal. We con-
sider the detailed band stucture of CuCl calculated while taking into account the
spin-orbit interaction.

For the optimization of the ground state energy of the biexciton we use the
twocomponent trial envelope functions of the type used by Brinkman et al. [4].
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We note that the analogous effect of mixing of the states of the opposite
parities with respect to the electron-hole exchange takes place in the bound exciton
complexes, i.e., in the case of exciton bound to neutral donor, where the symmetry
under the permutation of two electrons is considered [5, 6].

2. Two-band modeI of the crystaI

CuCl, the crystal of symmetry Td, has a band structure characterized with
the top, of the valence band at k = 0 (symmetry Γ7) and the bottom of the
conduction band also at k = 0 (symmetry F6). The notation of Koster et al. [7] for
the irreducible representations of space groups is used throughout this paper. The
energy gap EG(Γc6 - Γv7) is 3.429 eV. A lower fourfold degenerate valence band of
symmetry Γ6 is split off by the spin—orbit interaction by about 69 meV.

The conduction Bloch functions of Γ6 can be written as

where c can be identified with the 4s functions of Cu. The top valence Bloch
functions of Ґr are of the form [8]

(k stands for k,mJ; un ,k is a periodic function with the period of the crystal lattice
and is normalized to unity in a unit cell of volume ,Ω, ψn ,k is normalized in a large
volume V of N = V/ Ω) satisfy the usual Hartree—Fock equation

For the 2N-electron problem described by the Hamiltonian

the ground state is given by a Slater determinant

Any excited states we will construct from |φ) 0 by substituting some valence wave
functions |ψv,k (0)) with conduction states 1ψc,│(0) in Eq. (6).
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3. Bound states of the biexciton

The biexciton wave function is defined as a linear combination

We consider the biexciton formed from shallow Wannier excitons and we
make the assumption that the periodic parts of the Bloch functions, un ,k, vary
slowly with k over the range of interest — that is over the range of l, l', k, k' for
which BK (ll'kk' ) is appreciable — and that this range is small compared to the

dimensions of the Brillouin zone. The coefficients BK

(

ll'kk' ) are non-vanishing for
1+l' — k- k' = Konly.

The restriction to the subspace of the │ ll'kk' ) allows one to reduce formally
the 2N-electron biexciton problem to a few particle problem by associating to each
function│ ll'kk' )  the twoelectron and two-hole function

where K = -iσyK0 is the usual time reversal operator and Kψv,k is the state of
the hole. Indexes 1. 3 refer to two electrons, indexes 2. 4 — to two holes.

which should be satisfied for all l,l',k, k'. It was shown [9] that H(biex) can be
defined as

where E0 is the ground state energy of the electrons filling the valence band, e2/ εrij
are the screened Coulomb interaction terms (rij is the interparticle distance, ε is
the static dielectric constant). The effective electron-hole exchange term
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acting on the functions with separate pure spin part ψnk ψ│ s) (with |s) = 	 or
|s) = |↓)), reads as a projection operator

For the four-particle space of the biexciton we have sixteen basis functions. Since
the conduction and valence basis states (1), (2) are the eigenstates of the one-elec-
tron total angular momentum operators of J = 1/2, the four-particle states are the
eigenstates of the four-particle total angular momentum operation of J = 0, 1, 2.
The crystal symmetries of the biexciton states are given by the following products
of irreducible representations:

In the total momentum classification /Γ1 corresponds to J = 0,Γ 4 to J = 1
and Γ3 + 

Γ
5 results from the splitting of J = 2. We can attribute each of the

four-particle basis states to one of the irreducible representationΓi  of Td. Each
of these sixteen states |Γiμv) can be chosen with definite permutational parity —
the symbol μ (v) stands for the sign + or -, respectively, in order to indicate the
parity of the spin function under the permutation of the two electrons (holes). Only
appropriate combinations of the twoelectron and twohole singlets and triplets are
the eigenstates of the total (four-particle) angular momentum operation J 2 and

Jz, |μv;J,m). As a consequence there are possible only some parities of the |Γiμv)
states. Denoting by |0, 0) e the twoelectron singlet (μ = -1)
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we may express the |Ґiμv) states as follows:

In order to ensure the proper symmetry of the wave function of identical fermions,
each |Ґiμv) of definite permutational parity has to be multiplied by the spatial
function of opposite parity

where p 	 and v =
Now we consider the stationary Schrodinger equation (8)

for the biexciton wave function 1φ-) expanded in terms of the four-particle states

In the previous treatments [8, 9] it was always assumed that each biexciton eigen-
state │ 	 is proportional to the one of │Ґiμv) of definite parity under the permuta-
tion of two electrons and two holes. However, the states │Ґ1- -) and | Ґ1 + +) are
mixed by the effective electron-hole exchange interaction (see Appendix), and they
are not mixed with any other |Γiμv) states. Taking this mixing into consideration
we define the biexciton Ґ1 state
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Since electrons and holes are fermions, the following antisymmetric relations have
been assumed:

In Eq. (25) μ, v indicate the symmetry or antisymmetry of the coefficients
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Similarly to the exciton problem we introduce the Fourier transforms of the coef-
ficients BμνΚ [10]

which satisfy the symmetry relations

Taking the Fourier transform of Eq. (29) we show in Appendix that the functions
ΦμνΚ satisfy the matrix-differential effective mass equation

represents the kinetic and Coulomb energy of the four particles, (the vectors li , kj
have been replaced with the operators - ii, ijin the matrix elements of the
one-particle Hamiltonians contained in H(biex) (11)),

and J is the exchange integral for transverse excitons defined in Appendix (A8).
We adopt Dirac δ-functions since the exchange interaction is assumed to be a
short-range one effective only in Ω — the volume of the unit cell.

For the normalized functions

Φ

μνΚ  the coefficients(bμν(Κ) bμv(K)satisfy the equation

For each vector K there are two solutions for the set (b++ (K), b__(K)).
For the small biexciton kinetic energies (K ≈0) one of the solution, that with
|b++ (K)| ≈ 1 corresponds to the bound state. The next higher biexciton state of
the symmetry 

Γ
4 is also bound in CuCl [8] because of the very small electron–hole

mass ratio me/mh = 0.02. Similarly, as in the case of Γ1 states, the states|Γ4 - +),
|Γ4 + -) and |Γ4 + +) corresponding to the same mJ are mixed by the effective
electron-hole exchange interaction. For each mJ the appropriate effective mass
equation is the 3 x 3 matrix which acts on the envelope components b+ _Φ- + –,
b_ _+Φ– - andb_ _Φ'–,where for the normalizedΦw'the coefficients bμνΚ are ex-
pected to be about |b+-| 1 and |b_+ | << 1, |b_ _| << 1.
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4. Numerical results and discussion

We take the simple model of the band energies for the conduction and valence
bands in the vicinity of k = 0:

It is not possible to solve the four-body problem exactly and we therefore
employ a variational technique. We confine the problem to the case of the total
momentum of the biexciton being equal to zero, K = 0. We multiply the left
hand side of Eq. (32) by Φ++ and by Φ -- - and integrate over the coordinates of
particles. From the two non-trivial solutions of the obtained secular equation we
choose for the ground state the lower energy E(biex)

The value of the exchange integral J  (for transverse excitons) is taken from
the measured free exciton Ґ5 - Ґ2 splitting ∆ exchex = 6.2 meV, where ∆exchex =
(2/3)J|F(0)|2Ω [8] with F(0) — the value of the exciton envelope at zero electron-
-hole distance |F(0)| 2 = 1/πae3x (aex = εħ2 / μe 2 is the free exciton Bohr radius,
μ is the reduced mass). The energy E(biex), expressed with the parameters of the
trial wave functions Φ++ and Φ— - is numerically minimized. The form ofΦ++is
the one used by Brinkman et al. 141

where ψ is a function only of the electron-hole distances

with R — the hole-hole separation. In the antisymmetric function Φ- - ψ is taken
as
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The variational parameters n (integer), k, 	 A, B, C of the functions Φ++ and
the corresponding parameters of Φ- -- are varied independently in the minimization
procedure.

The values of parameters used in the calculation of the ground state energy
E(biex) are listed in Table I.

The binding energy of an biexciton is defined in accordance with Eqs. (33),
(36), and (38) as

where EG is the gap energy, E0 is the ground state energy of the electrons filling
the valence band and is the free exciton rydberg Rx = μe4/2є2ħ2. In CuCl
Rx = 190 meV. The biexciton binding energies EB observed and calculated are
listed in Table II. For the ratio of the linear coefficients b_ _/b++, which is a
measure of the admixture of the antisymmetric envelope function to the symmetric
one, we have got b__ /b ++= 0.052.

Some of previous calculations of the biexciton binding (dissociation) energy
EB in CuCl, based on the Hamiltonian without electron-hole exchange terms, are
in excellent agreement with experimental data, for example that 44 meV deduced
from Wehner's theorem [14]. However, the electron—hole exchange interaction taken
into consideration in calculations reduces EB significantly, as it was shown by
Forney et al. [9] and also in our present calculations (see Table II). The difference
between EB = 24 meV and EB = 26 meV listed in Table II is due to the admixture
(i.e. the ratio b_ _ /b++ = 0.052) of the antisymmetric envelope function to the
symmetric one.

In the simple band model, which was formerly considered by the author
[1, 2] and by Hayashi [3], the biexciton binding energy obtained with the trial
wave function (40) is EB = 28 meV.

We expect (by analogy to the calculations performed for an exciton bound
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to a neutral donor [6]) that the relative corrections due to the admixture of an-
tisymmetric envelope function are more significant for the oscillator-strength of
biexciton—exciton transitions than for the biexciton binding energy.

We note that in the case of CdS and ZnS (crystals of wurtzite stucture) the
ratio b_ _/b++ is of about 20% [2].
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Appendix

In the CuCl crystal the valence Bloch functions ψv,k have no separated spin
dependent part. Using the linearity of W(i, j) we may expand W(i, j) of Eq. (12)
in the form

where in the twoband model we have the completeness relation

Since the biexciton states are constructed from the Bloch functions with the wave
vectors, whose range (in the vicinity of k= 0) is small compared to the dimension
of the Brillouin zone, we evaluate the periodic parts un ,k (it has been assumed
that un,k varies slowly with k over the range of interest) in (Al) and (A2) with
cm i ( i) and υm j (j)) defined in Eqs. (1-2):
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where |mL = -1, 0, 1) stands for ψmL — the p-like functions and

We assume the matrix element (A5) to be equal zero for mL ≠ m'L. From the
symmetry of the crystal it follows that the matrix element (A5) for mL = m'L
does not depend on mL and has the same value for mL = 0, ±1 [15]

where the exchange integral j(к)  for к = l— k =l'-k'can be expanded in terms
of Wannier functions αn(r — R) [16] (the factor 1/N arises from the normalization
of the Bloch functions, Eq. (3), and the periodicity of their u-parts)

with the transition dipole moment μυc = f αυ*(r)erac(r)d3r. For transverse exci-
tons (к.·μсυ = 0) (A7) simplifies to

From Eqs. (A4—A7) we get

Since the basis four-particle states | ), Eq. (23), are antisymmetric under the per-
mutation of two electrons (i = 1, 3) or two holes (j = 2, 4) the matrix elements
of W(i, j) taken between these states | ) satisfy the equations ( | W(1, 2) |)' =
( W( 1 , 4) = ( W(3 , 2)|)' = ( | W(3, 4) | )'. Thus we may consider the term
(|W(1, 2)|)' only. Taking the Fourier transform of the matrix element (29) we get
for the term due to W(1, 2) the following expression:
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The Fourier transforms of the one-particle kinetic energy terms and of the
Coulomb terms in (29) are obtained with the same procedure used for the exciton
[10]. We get, for example, for the one-electron term HHF(1)

and, for example, for the electron—hole Coulomb term e 2 εri2

where U(q) is the Fourier transform of the electron-hole interaction potential,
U(q) = (e 2 /є) f d3 r exp(iq • r)/r = 4πe2/єq2 .

As a consequence, the Fourier transform of Eq. (29) becomes Eq. (32).
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