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A review is given of the differential operator technique in the Ising spin
systems. The theoretical frameworks of the various models are discussed on
the basis of the Ising spin identities. These can be applied to examine the
magnetic properties in a variety of magnetic materials.
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1. Introduction

The Ising model and its various variants are of the most extensively studied
many-body systems. The reason is due to the fact that they can describe fairly well
numerous physical systems, such as magnetic spin systems, binary alloys, lattice
gas, and so on.

The simplest form of the Ising model appears in one-dimensional lattice (lin-
ear chain) consisting of spin-1/2 atoms, with nearest-neighbor interactions and
in the absence of an exteual field. It was in this form that Ising proposed his
model in 1925, in order to study the magnetic phase transition. However, he did
not find a long-range order at any finite temperature. Indeed, one may say that
the Ising chain undergoes a phase transition at zero temperature. However, the
twodimensional (square lattice) Ising model in the absence of an external field
does show a phase transition at a finite temperature, which was solved exactly
by Onsager in 1944. After Onsager's solution, the Ising model has been one of
the most actively studied problems in statistical mechanics. Some rigorous solu-
tions have been given for the simple Ising model of one-dimensional and certain
twodimensional lattices. There are also many results based on the series-expansion
and renormalization-group methods, especially for the critical region of the model.
Much effort has gone into this field, but we do not yet have detailed theoretical
knowledge of the three-dimensional Ising model and its variations.

On the other hand, because of its simplicity, the mean-field approximation
(MFA) has played an important role for the description of cooperative phenomena,
in which the effect of the ordering interactions is naively represented by that of a
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mean field proportional to the average net magnetic moment of a magnetic system.
The theory can be relied on for an approximate description of the major aspects
of the phenomena being studied. However, the MFA has some deficiencies, due
to neglection of correlations, when MFA results are compared with experiments.
Improvements in this respect have been sought by many methods.

In this work, a useful scheme for obtaining approximate solutions in the
two or more dimensional Ising systems is reviewed. The method is based on the
differential operator technique introduced into exact (or approximate) Ising spin
identities and is of a relatively simple mathematical character. Using this scheme
we can write the identities in forms which are particularly amenable to approx-
imation. The approximate formulation can systematically include the effects of
correlations. The approach can be applied to a great variety of physical systems,
such as pure and disordered magnetic systems as well as special magnetic materials
(or surfaces, thin films and multilayers) being now in current topics of magnetism,
and gives an appropriate description of a system being studied. In the following
sections, we shall discuss how the differential operator technique can be intro-
duced into various types of the Ising models, and also clarify the backgrounds of
the approximate formulations.

2. Ising model and Callen identity

The Ising model of ferromagnetism is a model whereby, because of an extreme
field of anisotropy, only the z component of a spin exists. The Hamiltonian of the
model, in an external field H, is given by

where the sums run N identical spins. μi is the dynamical variable which can
take two values, ±1 and Jij — the exchange interaction between a site i and a
site j. That is to say, μi is the z component of a spin operator (S1z= (1/2)μi)
associated with the ion localized at the site i which can take spin up (μi = +1)
or down (μi = - 1). The spin system is ordered when all spins are up (or down)
in a ferromagnet (Jij>0.0). The magnetic field is added in order to break the
symmetry and favor the ordered phase to be up or down. The parameter that
measures the ordering of the system (or the long-range order parameter) is given
by m = (μi). In the ordered phase m ≠ 0.0, while in the disordered phase m = 0.0.

The expectation value of the spin variable at the site i is given by

with

where Tr means the sum over allowed states of the system. Here, β = 1/kBT,
where kB is the Boltzmann constant and T — the absolute temperature.

We know now that an exact relation can be derived for the expectation value
(2), when the Hamiltonian is given by (1). For the derivation, let us separate the



Differential Operator Technique in the Ising Spin Systems 705

Hamiltonian (1) into two parts; one (denoted by Hi) which includes all contribu-
tions associated with the site i, and the other (denoted by H') which does not
depend on the site i. Then, one has

where Ei is the operator expressing the local field on the site i. Here, notice that
the spin variables commute, i.e. [μi,μj]= 0, and hence

in the Ising model.
Because of the commutative relation, the expectation value (2) can be ex-

pressed as

where trai) = ∑μi+1=-1 stands for the trace associated with the variable at the site i.
By doing the partial trace of μi, one obtains

or 	 (9)

This is the identity first derived by Callen in 1963 [1].
By extending the above procedure, the identity can be easily generalized to

where {fi} can take any function of the Ising variables as long as it is not a function
of the site i.

Furthermore, the above derivation of (9) can be also generalized to the Ising
model with a general spin S expressed by

where Szi takes the (2S + 1) components allowed for a spin value S. Then, one
obtains

with

where Bs(x) is the Brillouin function [2].
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At this place, notice that the standard mean-field theory can be obtained
from (9) (or (12)) by approximating the thermal average of the hyperbolic tangent
(or the Brillouin function) with the thermal average of Ei, i.e.,

or 	 (14)

Thus, the exact identities (9), (10) and (12) give a way to improve the mean-field
approximation.

3. DifferentiaI operator technique

The identities of Sec. 2 have been derived about 30 years ago. At this time,
only a few authors had directed their attention to these identities for discussing
the thermodynamic properties of the Ising model. During the last decade, however,
numerous publications dealing with Ising systems have appeared, employing an
effective-field theory which correctly accounts for the single-site kinematic relations
between the spin operators. The starting point of these works is based on a set of
formal identities, of the type discussed in Sec. 2.

The first systematic approach was introduced by Matsudaira [3]. In order
to treat the Callen identity (9), he noticed the following exact relations valid for

and so on, where K = AI for nearest-neighbor interaction J. For instance, the
identity (9) for the honeycomb lattice with coordination number z = 3 can be,
upon using the exact relation (15), rewritten as

where i+δ (b = 1, 2, 3) denote the nearest-neighbors of the site i. However, when Ei
in (9) includes a number of Ising spins, it is not so easy to write the corresponding
exact relation. Furthermore, for higher spin (S > 1/2) systems as well as random
spin-1/2 systems, it is a difficult task to find such exact relations.

As is understood from (16) (or (15)), the use of the kinematic relations for
the spin operation is a cucial step in the theory based on the identity (9) (or (12))
as an average over a finite polynomial spin operators belonging to the neighboring
sites. This can be systematically and easily achieved by the use of a differential
operator technique introduced by Honmura and Kaneyoshi [4]:
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for (12), where V = 0/0x is a differential operator. Here, we used a mathematical
relation

In the following parts, let us examine at first the simplest case of μi = ±1 (S = 1/2).
For the case of an arbitrary spin (S > 1/2), see Secs. 6 and 7.

Noticing that

Eq. (17) can be written as, for H = 0.0,

Here, when z = 1, 2 or 3, the same exact relations as those of (15) can be easily
derived. For example, when z = 2,

Here, going from the second line to the third line in (22), we used the fact that
even functions of V must be zero when operating to the odd function (or tanh x).
In this way, the exact relation (10) can be generally rewritten as

where h = βH. This is also exact and is valid for any lattice stucture of a
spin-1/2 Ising model. Equation (23) can generate many kinds of identities for spin
correlation functions, upon substituting appropriate Ising variable functions for

For the latter discussion, let us via Eq. (23) examine the spin correlation func-
tion of the spin-1/2 linear chain with nearest-neighbor interaction J [5]. Putting
{fi} = μk (k ≠i)andH =0.0 into (23), it gives

At this place, due to translational invariance, the correlation function (μkμi)de-
pends only on the distance between i and k:

where r = i — k is a measure of the distance between spins, in units of a lattice
constant. Using (25), Eq. (24) can be written as
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which implies that the right-hand side must be independent of r. Assuming that

and taking the physically acceptable solution, the solution of (26) is given by

Thus, one obtains

This is a well-known exact result for the Ising chain.

4. Effective-field theories

It is well known in statistical mechanics that the one-dimensional nearest-
-neighbor Ising model can be solved exactly. The exact solutions of the thermo-
dynamic properties in the spin-1/2 Ising linear chain can be also derived by the
use of the differential operator technique based on the exact identities. As guides
to real (two or three-dimensional) systems, however, such a model has a serious
disadvantage, since it does not have a phase transition at a non-zero temperature.

On the other hand, the first step in the interpretation of the magnetic prop-
erties of a solid is usually the application of an effective-field theory. When used
correctly, the theory can be relied on for an approximate description of the ma-
jor aspects of the phenomena being studied. It acts as a guidepost, as it was,
indicating the direction of more elaborate theoretical contractions and of more
detailed experiments. In this section, let us discuss how the approximate formu-
lations (or effective-field theories) superior to the mean-field approximation (14)
can be derived systematically from the present formulation based on the Ising spin
identities.

.4.1. Decoupling (or Zernike) approximation

As is understood from (16), the right-hand side of (23) contains thermal av-
erages of multiple correlation functions. To proceed further, one has to make some
approximations, in order to treat the identities approximately. The simplest ap-
proximation, and the one most frequently adopted, is to decouple these according
to

Introducing the approximation (30), the averaged value of μi ((23) with
1.0) can be written in a compact form [6]:

To simplify the notation, let us consider the case of zerofield and nearest-neighbor
interactions. For a ferromagnet with a coordination number z, Eq. (31) then re-
duces to
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The transition temperature Tc can be obtained by linearizing (32); by expanding
the right-hand side of (32) and taking only the linear term of m, one obtains

where βc = 1/kBTc . In particular, when z = 6 (or a simple cubic lattice), Eq. (33)
reduces to

which is nothing but the result obtained by Zernike by means of another approach
[7]. The transition temperature Tc is then given by

which is superior to the MFA result

We are now in a position to clarify the background why the simple decoupling
approximation (30) improves the standard MFA (14). For H = 0.0, Eq. (31) can
be also rewritten as follows:

Here, the factors (1/2)(1 + (μj)) and (1/2)(1 — (μj)) mean the probabilities of a
neighboring spin μj being up and down. Then, exponential operators exp(Jij )
and exp(-Jij ) express in a sense exp(Jij ) for μi = +1 and exp(-Jij ) for
μi = -1, respectively. On the other hand, the standard MFA consists of assuming
that the field at the site i is (Ei) = ∑j Jij(μj) independent of the orientation
of μi. This is clearly an approximation, for if μi is up, its neighbors μj will have
more than average production for being up, a fluctuation effect that is neglected
in the MFA. Thus, the partial correlation is included automatically in the simple
framework through the usage of (20).

When one takes long-range interactions and the number of near neighbors
goes to infinite, it is known that the MFA becomes to be exact. Within the present
framework, let us here show this fact. For this aim, we take the exchange interaction
Jib in (31) as

where N is the total number of lattice points. Then, Eq. (31) reduces to

For a large value of N, cosh(j /N) and sinh(j /N) can be approximated as

so that (39) reduces to
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Thus, the MFA result can be derived from the present framework, when N → ∞
Finally, it will be fair to note some historical developments related to the

framework of this part in the spin-1/2 Ising model. In order to treat the multi-
spin correlation functions which appear for reducing the transcendental function
to a polynomial form (or (15)), the decoupling approximation (30) was also in-
troduced by Matsudaira [3]. He called it the first-order approximation. As noted
above, the same decoupling approximation has been introduced into the present
framework. It has been called the effective-field theory with correlations (EFT).
The differential operator technique can be also rewritten in terms of the functional
integration method [8]. Within the same framework as that of the EFT (or (30)),
the method has been used by Lódź group [9]. Later, the same method as that of
Matsudaira was proposed by Boccara [10], who was apparently unaware of these
earlier works, and it has subsequently been used extensively by him and group of
researchers in Morocco as the finite cluster approximation [11]. Clearly, as far as
the physics is concerned, it is immaterial whether one uses Matsudaira,s first-order
approximation, the EFT, the functional integration methods or the finite cluster
approximation. All of them correspond to the Zernike approximation. However,
in these methods, the differential operator technique has generally been more fa-
vored, because of the relative easiness of the formulation of other thermodynamic
properties and the extension to higher spin problems as well as disordered spin
systems.

4.2. Correlated effective-field (or Bethe-Peierls) approximation

In Sec. 4.1 we have introduced a simple decoupling method (30) for treating
the multispin correlation functions. In this part, we shall discuss how the formula-
tion of Sec. 4.1 can be improved to a better one (or from Zernike to Bethe-Peierls
approximation).

Let us now assume that the nearest-neighbor Ising variable μi+ δ can be
related to the central spin 	 via

where λ is a temperature dependent parameter. It is basically a measure of the
short-range order, or pair correlation parameter.

When Eq. (42) i8 substituted into the Hamiltonian (1) with II = 0.0, it is
given by, for a system with nearest-neighbor interaction J,

with

where R = λJz is the parameter which has to be determined at the end of cal-
culation in some way. This transformation to the one-body Hamiltonian (44) has
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been introduced by Lines [12] and then the effective-field Hieff is modified by a
term —R(μi) from the standard mean-field Himol

This revision of the effective field is closely related to the fundamental con-
cept introduced by Onsager for dielectrics [13]. He has discussed that the orienting
part of the local field on a given dipole (or the cavity field) should not include
the contribution arising from the part of the polarization of dipoles in its vicinity
which comes from its instantaneous orientation (or the reaction field). Namely, the
cavity field is then obtained from the total mean field by subtracting the mean
reaction field

Thus, the effective field (44) is nothing but the cavity field (45) and the term R(μi)
corresponds to the reaction field. In the Lines method, the parameter λ (or R) has
been determined at the end of the calculation by imposing consistency of the theory
with the sum rule for the susceptibility. However, the method gives an accuracy
essentially equivalent to that of the spherical model [14], and unfortunately the
sum ule is valid often only in the paramagnetic phase and in the absence of strong
fields. Moreover, when the method is applied to the twodimensional ferromagnetic
Ising lattice, it generally predicts Tc = 0.

In the differential operator technique, on the other hand, the concept (44) has
been used for evaluating the multispin correlation functions [15]. This is sharply
in contrast to the above approach. Then, the parameter .\ has been determined
self-consistently using the correlation function (23).

Substituting (42) into (23) with {fi} = 1 and taking the nearest-neighbor
interactions, one obtains, on assuming that m = (μi) = (μi +δ) and H = 0.0,

with

Here, when λ = 0.0, Eq. (46) reduces to (32).
For the evaluation of λ, on the other hand, let us use the two spin correlation

function which is given by, on putting {fi} = μi+δ into (23),
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Substituting (42) into (48), one obtains

with

Thus, the magnetization m and correlated parameter λ of the Ising ferro-
magnet with a coordination number , z can be evaluated from the coupled equations
(46) and (49).

For example, when z = 4 (or square lattice), they reduce to

and

where coefficients K1 and K2 are given by

Thus, the transition temperature Tc can be determined from the coupled equations

which can be solved analytically and gives

The temperature dependence of λ for the ferromagnetic square lattice with nearest-
-neighbor interaction J is depicted in Fig. 1 by solving the coupled equations (50)
and (51) numerically.

In general, the transition temperature 	 and the correlated parameter λ at
T = Tc are given by, within the present formulation (or (46) and (49)),
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and

The result of Tc is equivalent to that of Bethe—Peierls approximation, although the
philosophy on which these two theories are based is different to each other. For
comparison, the values of Tc obtained from Secs. 4.1 and 4.2 as well as the MFA
are collected in Table I and the exact or high-temperature series expansion results
[16] are also listed.

4.3. Effective-field renormalization group method

In Secs. 4.1 and 4.2 we have discussed how the spin correlations can be
decoupled for transforming the transcendental function into a polynomial form.
Then, the results applicable to general lattice coordination numbers are obtained.
However, the fault of these approaches is that the results depend on the coor-
dination number, but not on the dimensionality. A value of z = 4, for example,
may equally be a square lattice or a diamond lattice. In order to take account
of the lattice dimensionality as well as the coordination number, one has to treat
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the multispin correlation functions in forms depending on these qualities. Such a
formulation can be made by going to Matsudaira,s higher order decoupling ap-
proximation [3] better than the simple decoupling approximation (30). Then, the
formulation cannot be described in a general form but it must be made separately
in a way of depending on the lattice structure. Another way of incorporating these
properties is to express the thermal average of the transcendental function as an
average over a finite polynomial of spin operation in an n-site cluster (n > 1)
[4, 17].

In this part, let us discuss how traditional (effective-field) procedures of ob-
taining equations of state can be converted into a modern tool for constucting a
regular renormalization-group mapping according to the Wilson ideas. Due to its
connection with standard mean-field procedure, the denomination of mean-field
renormalization group has been used in the literature [18]. It has been success-
fully used to provide qualitative and quantitative insights into the critical behav-
ior of spin systems. On the other hand, the effective-field renormalization-group
scheme can be, via the differential operator technique, formulated by treating the
effects of the surrounding spins of each of the clusters in a way of constructing the
effective-field equations of states on the basis of the Ising spin identities.

The principle of the phenomenological renormalization group is based on
the comparison of two clusters of different sizes N, N' (N' < N), each of them
simulating the infinite system. For the two clusters, one calculates an approximate
equation of state for the magnetization per site, namely mN and mN,. In the
mean-field renormalization group, this is done within the traditional mean-field
scheme, in which the effects of the surrounding spins in each cluster is replaced
by very small symmetric breaking fields b and b', acting on the boundary sites of
each of the clusters with N and N' interacting spins, respectively. By imposing
that both magnetizations of the clusters and respective symmetric breaking fields
are scaled in the same way, one gets

which is independent of the scaling factor. This relation gives a recursion rela-
tion between the coupling constants K and K' in the systems. From the relation
K' = K'(K), the critical coupling Kc can be extracted by solving the fixed point
equation K* = K'(K*) invariant under a change of scale. Furthermore, the critical
exponent v of the correlation length ξ defined by

can be also obtained by linearizing the recursion relation in the neighborhood of
the fixed point K*:

where l= (N/N')1/dis the scaling factor anddis the dimensionality of the system.
Let us illustrate now the general arguments of the phenomenological renor-

malization group by taking the simplest choice, namely, clusters of one (N' = 1)
and two (N = 2) spins. In the one-spin cluster the spin μ1 interacts with z1
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nearest-neighbor sites via the coupling constants K'ij. In the two-spin cluster, on
the other hand, the spins μi and μ 2 interact directly via the coupling K12 and
both μi and μ2 spins interact with their neighbor sites also via the coupling con-
stants K1i and Using the same procedures as those of Sec. 2, the averaged
magnetizations mN' and mN associated to the N' = 1 and N = 2 clusters are
given by

and

where u =∑ j,K1jμj and v =

∑j'K2j'μj'

Using the differential operator technique and noticing that the sites 1 and
2 of the two-spin cluster may include a set of common-neighbor sites, the set of
Eqs. (61) and (62) can be written in the following forms:

and

where  = ∂/∂μ (μ = x or y) are the differential operation and the functions
f(x) and f (x, y) are defined by

f(x) = tanh x 	 (65)

and

Here, the products ∏' over j and j' in (64) are respectively the isolated nearest-
-neighbor spins of sites 1 and 2, while the product ∏' over k is restricted to the sites
which are simultaneously nearest neighbors of both μi and μ2 spins. Furthermore,
the exponential operators in (63) and (64) can be rewritten into the product forms
of μj by the use of (20).

As discussed in Sec. 4.1, we introduce here the decoupling approximation
(30) into the exact relations (63) and (64). Basing on the approximation (30) and
replacing each boundary average (μj) (or (µj)) in their right-hand sides with the
symmetry breaking mean-field parameters b'j (or bj),the critical behavior of the
system can be obtained by expanding the right-hand side of them and taking only
first-order terms in these parameters
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an ti

Here, z' denotes the number of sites which are nearest neighbors of μi (or μ2)
but not neighboring to μ2 (or μi), and z" represents the number of sites that
are simultaneously nearest neighbors of both μi and μ2. Thus, z2 = 2z' + z"is
the total number of nearest-neighbour sites of the two-spin cluster. Hence, the
coefficient Azn (It) incorporates the detail of the geometry of the lattice beyond
its coordination number z1, through z' and z".

Combining (69) and (70) with the scaling assumption, one gets from (58)

which is the recursion relation between the coupling constants K and K' for the
two rescaled systems N' = 1 and N = 2. The reduced critical interaction Kc is
the non-trivial fixed point K' = K = K* = Kc solution of (71) and the critical
exponent v for the correlation length can be obtained from (60), noting that

These approaches can be also extended to higher-order approximate recur-
sion relations by considering clusters larger than N = 2. The numerical results
obtained from such effective-field renormalization group methods are given in Ta-
ble II and compared with those of the exact calculations or high-temperature series
expansion methods as well as the mean-field renormalization group method [19].

5. Thermodynamic properties

In the previous sections, some magnetic properties (TT and magnetization)
of a spin-1/2 Ising system have been discussed. Here, let us study how other
thermodynamic properties of a spin-1/2 Ising system can be formulated on the
basis of the differential operator technique.
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5.1. Initial susceptibility

The initial susceptibility x is defined by

For the spin-1/2 Ising model, the magnetization m(T, H) is given by (23), on
putting {f1} 	 1 into it. Accordingly, the initial susceptibility (73) is given by

where (• • •) H and (• • •) 0 express respectively the field- and zerofield dependencies
of the canonical average. This is also exact and valid for any lattice.

For the spin-1/2 linear chain with nearest-neighbor interactions, Eq. (74)
can be calculated exactly by the use of the spin correlation function (μi-iμi+1)0
as follows [5]:
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which is the exact result of the spin-1/2 Ising chain.
In a real system with a higher dimensional lattice where the number of neigh-

bors is z > 2, one cannot calculate (74) exactly and hence some approximation
must be introduced for the evaluation. For example, when the decoupling approxi-
mation (30) is introduced into the right-hand side of (74), the initial susceptibility
of the spin-1/2 Ising ferromagnet with nearest-neighbor interactions can be ex-
pressed as

with

where the magnetization m can be obtained from (32). At T = Tc , m = 0, so
that the relation Ґ = 1 in the denominator of (77) reduces to (27). From it, the
transition temperature can be determined. Thus, the initial susceptibility diverges
at T = Tc The paramagnetic susceptibility valid for T > Tc is then obtained by
substituting m = 0 into (78) and (79).

5.2. Internal energy and specific heat

This is also exact. Then, the specific heat, defined as

can be also evaluated by using (81).
For the spin-1/2 Ising chain, the internal energy (81) can be calculated ex-

actly. It is given by

from which the specific heat is
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Thus, the exact thermodynamic properties of the spin-1/2 Ising chain can be
derived from the differential operator scheme.

For real systems, on the other hand, the expression (exp(Eiy)) in (81) can be
evaluated by the use of some approximation discussed in Sec. 4. Within the frame-
work of the decoupling approximation (30), the internal energy of the spin-1/2
Ising ferromagnet with nearest-neighbor interactions is given by

from which the specific heat can be also obtained. Here, notice that the decoupling
(or Zernike) approximation predicts a magnetic specific heat starting from zero
at T = 0 K and rising to a sharp maximum at T = Tc. At this point it drops
discontinuously to a non-zero value and then tails off at high temperatures, varying
as T-2 in the high-temperature limit. As is understood from (85) with m = 0.0, the
non-vanishing specific heat provides a distinct improvement over the traditional
MFA with C = 0.0 for T > Tc, due to the finite short-range order above the Curie
point [4, 20].

6. Spin-one Ising models

In the previous sections, the spin-1/2 Ising model has been formulated and
discussed on the basis of the differential operator technique. On the other hand,
spin-one Ising models are also encountered in different fields of physics and continue
to be one of the most actively studied problems in statistical mechanics. In contrast
to the spin-1/2 Ising model, they are of particular importance, because of the
fundamental interest in the multicritical phenomena of physical systems, such
as 3He-4He mixtures, ternary alloys, metamagnets and multicomponent fluids.
In particular, the spin-one Ising model with a crystal-field interaction is often
called the Blume-Capel (BC) model [21] and the Blume-Emery-Griffiths (BEG)
model [22] contains a biquadratic exchange interaction and single-ion anisotropy in
addition to the bilinear exchange interaction. In this section, let us study how the
two spin-one Ising models can be formulated by starting from the corresponding
Ising spin identities and using the differential operator technique.

6.1. Blume-Capel model

The Hamiltonian of the Blume-Capel (BC) model is given by

where Szi takes the values ±1 and 0, and the first summation runs over all
nearest-neighbor spins. J (J > 0) is the exchange interaction and D — the crys-
tal-field constant.

Using the treatment presented in Sec. 2, one can obtain the exact identity
of this model as
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with

where the function F(x) is defined by

This identity corresponds to a special case of Eqs. (10) or (12). In fact, when
D→ ∞, the function F(x) reduces to tanh (βx) and hence (89) becomes equivalent
to (10). In other words, when D takes a large positive value, the BC model behaves
like the standard spin-1/2 Ising model and in this case the Szi = 0 state is not
allowed energetically.

On the other hand, by comparing the values of the ground state energies for
the BC model with Szi = ±1 or Szi = 0, the possible ordered phases at T = 0 K
are separated at the critical value Dc of D, namely

where z is the coordination number. That is to say, at the critical value, the
ordered phases at T = 0 K may show the flrst-order transition: from the Szi = ± 1
state to the Szi = 0 state, when the value of D decreases. Below the critical
value, the BC model does not show any long-range order (or m = (Sr) = 0.0) at
T = 0 K. In relation to this behavior, the BC model may take a characteristic
feature (or multicritical phenomenon), when the value of D becomes negative.
Thus, the BC model may exhibit an outstanding phenomenon completely different
from the standard spin-1/2 Ising model.

Now, by introducing the differential operator technique (87) can be written

For a system with S = 1/2, we have used the identity (20), in order to treat
the exponential operator exp(Ei ). For this case, the Si takes three components,
namely Szi = +1, 0, -1, and hence we must use another identity given by

This is also exact and is valid for any lattice. In particular, the magnetization per
site, (Szi), can be obtained by substituting {fi} = 1 into (93).

At this place, expanding the right-hand side of (93), multispin correlation
functions appear. However, the formulations discussed in Sec. 4 can be also applied
to this model with some modifications. The first step for treating them is to neglect
the correlation between different sites, namely
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which corresponds to the Zernike approximation of the spin-1/2 Ising model. In-
troducing the approximation, the magnetization per site is given by

In order to evaluate (Szi), it is necessary here to calculate another order
parameter ((Szi)2). This situation normally appears in a system with S > 1/2,
when we use a method beyond the standard MFA. By the use of the same procedure
as that of (91), one can also derive an exact identity

with

Assuming that

we obtain, from (95) and (96),

These equations are valid for any kind of lattice structure characterized by the
coordination number z. In particular, for the linear chain (z = 2) one can easily
prove from these equations that m = 0.0 for all temperatures (or Tc = 0) [24].
Here, for deriving Eqs. (99) and (100), we have used Eq. (94). The improvement
may be also done, like in Secs. 4.2 and 4.3. For other thermodynamic properties,
we can also formulate in the same way as that of spin-1/2 Ising model in Sec. 5.

As noted first, the BC model may show a characteristic behavior (or a mul-
ticritical point), when the value of D/J takes a negative number. That is to say,
it is well known that the tricritical behavior may appear in the system. At the
tricritical point, the system changes from the second-order phase transition to the
first-order one, when the transition temperature is plotted as a function of D.

In order to discuss the tricritical behavior, the right-hand side of (99) and
(100) must be expanded by assuming that m is small. Then, we obtain in general
an equation for m of the form

The second-order phase transition line is determined by the condition

Here, the parameter a is defined by

where qo is the solution of
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In the vicinity of the second-order phase transition line, the magnetization rn-is
given by

The right-hand side must be positive. If it is not the case, the transition is of the
first order, and hence the point at which

a = 1 and b = 0 	 (106)
is the tricritical point [25].

At this point, in order to obtain the expression for b, let us substitute

into (100). The expression of q 1 is then given by

with

Substituting (107) into (99), the expression of b in (105) is given by

In Fig. 2, the transition temperature of the BC model is schematically de-
picted as a function of D/J. In the figure, the solid and dashed lines denote re-
spectively the second-order and first-order phase transition lines. The white circle
represents the tricritical (or multicritical) point. In Table III, the results of the
tricritical point obtained from the condition (106) as well as other methods are
collected. These results indicate that the tricritical point [24, 25] of the BC model
is universally found at

6.2. The Blume-Emery-Griffiths model

The Hamiltonian of the Blume-Emery-Griffiths (BEG) model is given by

where J, J', and D are the bilinear, biquadratic and anisotropy parameters, re-
spectively. Here, when J' = 0.0, Eq. (113) reduces to (86), namely the BC model.
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Accordingly, the frameworks discussed for the BC model can be straightforwardly
extended to the BEG model, when the identities for the model are obtained.

For this aim, the exact identities of the BEG model were derived by Fitti-
paldi and Kaneyoshi [26], and Tucker [27] by the use of the differential operator
technique. They are given by

in which we have introduced the notations
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and

At this place, one should notice that the identity

has been used for the derivation, instead of (92) in the BC model.
Owing to the similarity between the identities (91) and (96) of the BC model

and the identities (114) and (115) of the BEG model, we can also introduce the
approximate treatments of Sec. 6.1 into the identities (114) and (115). The simplest
approximation is to use the decoupling approximation (94). Then, the expectation
values defined by

are given by

Now, let us define the parameters d and r as

where J > 0. We assume at first that m = mi and q = qi in (122) and (123),
like the BC model. This may be called the one-sublattice model. Then, from the
ground state argument the Szi = 0 (m = 0, q =0) state and theSzi =±1 (|m| =1,
q = 1) state at T = 0 K are separated by the condition

instead of (90). This relation is depicted in Fig. 3 as a dashed line. When 7'c of the
system with r > -1 is plotted as a function of d, the tricritical point can be also
found on the curve at a negative value of d. On the other hand, when r = -1.0,
the Tc curve reduces to zero at d = 0.0 and hence the tricritical behavior as well
as Tc cannot be obtained in the negative region of d. In this way, the BEG model
has an additional parameter r. Therefore, it can include richer phenomena than
the BC model, especially when r becomes smaller than r = -1.0. The situation
is depicted in the figure, which is obtained from the magnetization process in the
one-sublattice model [28].

A particular interest of recent researches is directed to the region of r < -1.0
in this model. The Monte Carlo simulation [29] has predicted that a new phase
may occur in the region of J J' < 0.0 and D < 0.0, namely r < -1.0 and
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d < 0.0. In the phase the system does not show any long-range order (or m = 0.0)
in a usual sense and splits into two interpenetrating sublattices. That is to say, the
result indicates that the new disordered phase consists of two interpenetrating local
sublattices randomly distributed in the system. One sublattice has sites occupied
by Szi = 0.0 and the other sublattice has sites occupied randomly bySzi =±1.
Thus, when r < —1.0, the description of the two interpenetrating sublattice model
seems to be required for this model, although the new phase (often called the
staggered quadrupolar phase) corresponds to the phase IV with m = 0.0 and
q ≠ 0.0 in Fig. 3 obtained from the magnetization process of the single sublattice
model.

7. Higher spin problems

In the previous sections, we have studied spin-1/2 and spin-1 Ising models
by means of the differential operator technique based on the identities. Now, how
can the technique be extended to the Ising models with spin values higher than
S = 1? For example, from Eq. (12) we can also obtain the following form:

Then, in order to treat the exponential operator, the identities (20) and (92) have
been used in spin-1/2 and spin-1 Ising models. These identities are often called the
Van der Waerden identities. For S = 3/2, on the other hand, the Van der Waerden
identity is given by

with
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In general, for an arbitrary spin value larger than S = 1, the following transfor-
mation is valid:

Substituting Szi = -S,...,+S into (129), one can get a set of (2S+ 1) parameters
for the spin variables as well as the coefficients An(a), like (128) [30].

By selecting the spin-S BC model, let us discuss in this section how the
differential operator technique can be extended to the Ising problem with a higher
spin value (S > 1). The Hamiltonian is also defined by (86). Then, the spin
operator Szi in (86) can take (2S+ 1) values allowed for a spinS,namelySzi = -S,
-S + 1,..., S -1, S. For the spin-S BC model, one can derive the following
identities:

for S = 2, and so on.
Now, using the Van der Waerden identity (129) for an arbitrary spin S, the

exponential operator in (130) and (131) can be exactly represented as the product
of the sum of (2S + 1) independent variables at each neighboring site. In contrast
to the spin-1/2 and spin-1 cases, it is not so easy to treat these Ising spin identities
in the simple forms. In fact, even when the simplest decoupling approximation,
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like (94), is adopted for different neighboring sites, one must introduce the 2S
independent spin variables

for the evaluation of the identities. Furthermore, expanding the right-hand side of
these identities, the calculations of the coefficients in the polynomials of the 2S
order parameter become too complicated forms of the coefficients, An(a), in the
Van der Waerden identity (129), like (128) for S = 3/2.

In order to avoid such calculation difficulties inherent to the usage of the
exact spin-S Van der Waerden identity, Kaneyoshi et al. [30] have introduced the
generalized but approximated Van der Waerden identity

which is valid for any spin value S. In particular, for S = 1/2 Eq. (135) reduces to
the exact one

since the parameter n is then given by  = 1/2. In fact, the framework based on
(135) has given reasonable results for various physical quantities in comparison
with those based on the exact Van der Waerden identities [31]. Thus, Eqs. (130)
and (131) can be transformed, by the use of (135), into the forms

By the use of these formulations, one can evaluate various magnetic proper-
ties of the spin-S BC model, as discussed in the previous sections. At this place,
we shall discuss only the phase diagram of the system. In the same way as that of
Sec. 6.1, one can obtain

in the vicinity of the second-order phase transition line. The general expressions
of the parameters a and b are given in [30].

From the general framework, the phase diagram can be evaluated numeri-
cally. In this case, the obtained result must be distinguished, depending on whether
S is an integer or a half-integer:

(i) For an integer spin (S = 1, 2, ...), there always exists a point at which
the tricritical condition (a = 1 and b = 0) is satisfied, when the value of D/J takes
a negative number. The phase diagram is given by the same form as Fig. 3 for the
spin-one BC model. Within the present formulation, the tricritical point for the
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spin-one BC model is also given by (112). On the other hand, the tricritical point
for S = 2 can be determined as

With the increase in S, therefore, the value of Dt/zJ seems to approach to the
critical value Dt/zJ = —0 5.

(ii) For a half-integer spin (S = 3/2, 5/2, ...), the parameter b is always
negative for any z. In other words, the BC model with a half-integer spin does not
show the tricritical behavior. This is reasonable, since the system does not include
the Szi = 0 state. The phase diagram is schematically presented by Fig. 4. In fact,

when D → ∞, the functions FS(x) and GS(x) are respectively given by

which means that only the Szi = ±S state is allowed in the limit. Substituting
(142) into a and noticing that  = S, the condition a = 1 determining Tc is given,
within the present formulation, by

On the other hand, when D → ∞ , the functions Fs(x) and GS(x) are given by

which implies that only the Szi = ±1/2 state is allowed in the limit. Here, the
transition temperature is determined from

which is nothing but the Zernike equation (33) for S = 1/2. Thus, for |D|→ ∞ ,
the phase diagram of the BC model with a half-integer spin may approach to the
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two constant values continuously, namely one — the transition temperature of the
Szi = ±S state and the other — the transition temperature of the Szi =±1/2
state.

8. Spin-S transverse Ising model

The Ising model with a transverse field Ω is described by the Hamiltonian

where the Szi , Sxi are the components of quantum spin S operators and the first
summation is over all nearest-neighbor pairs.

The transverse Ising model for the case S = 1/2 has been extensively in-
vestigated for many years by the use of various techniques. In fact, the model is
useful for the study of cooperative phenomena and phase transitions in many sys-
tems including order–disorder ferroelectrics, induced moment ferromagnets, and
cooperative Jahn-Teller systems. In this section, let us discuss how the present
technique can be extended to the model with an arbitrary spin S.

For the application of the differential operator technique to an Ising spin
system, it is necessary to find the spin correlation identity. As discussed in Sec. 2,
it is always based on the fundamental fact that Hi and H' commute each other,
when the Hamiltonian is separated into two parts Hi and H' like (4). For the
transverse Ising model, on the other hand, one should notice that Hi and H' do
not commute when the Hamiltonian (146) is separated into two parts. Owing to
the fact, the exact identities cannot be derived for the transverse Ising model.
As proposed by SáBarreto et al. [32], however, the approximated spin correlation
relations can be derived for the Hamiltonian (146) and they have been used as the
starting formula.

Let us start at first from the derivation of the approximated identities. The
expectation value including the longitudinal or transverse spin operator at a site
i is given by

where α = z or x. Separating the Hamiltonian (146) into two parts, Hi is given by

By noticing that Hi and H' do not commute, we can obtain the following result
for the expectation value (147):
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with

where Tr{i} means the partial trace with respect to the lattice site i.
Equation (150) is also an exact relation, although it is difficult to deal with

owing to the presence of the second thermal average. Accordingly, let us introduce
an approximation as follows:

from which we can obtain a relation

Then, the decoupling (152) can be viewed as a zeroth-order approximation of the
exact relation. In other words, Eq. (153) can be assumed to be obtained from the
approximation

The approximated relation (153) has been used by many authors as the
starting point for the statistics of the transverse Ising model. In fact, it has been
successfully applied to a number of interesting physical systems for S = 1/2 and
S =1 [33]. In order to calculate the relation (153), one must diagonalize the form
of Hi by the use of the rotational transformation

For the evaluation of (153), furthermore, one must use the following matrices:

where b is the Kronecker δ-function and σ can take 2S + 1 values allowed for a
spin S, namely σ = —S, —S +1,..., S —1, S. From these procedures, one can
get the relations [34]:
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where the function fS(x) depends on the value of S. The function is given by

and so on, where the parameter y is defined by

In the limit of Ω = 0, ({fi}Sxi) = 0 and θi = Ei, so that for S = 1/2 Eq. (160)
reduces to the Callen identity (10) for the spin-1/2 Ising model. In particular, the
standard MFA is given by replacing the operator Ei in (160) and (161) with the
averaged value (Ei); by setting {fi} = 1 into them, the longitudinal and transverse
magnetizations of the MFA are given by

with

Thus, the relations (160) and (161), although they are approximately derived, are
expected to give fairly nice results especially for small values of Ω.

By introducing the differential operator technique, the magnetizations can
be rewritten as

where the functions FS(x) and HS(x) are defined by

In order to treat the exponential operator in (168) and (169) for an arbitrary spin
S, let us use the generalized but approximated Van der Waerden identity (135).
Then, for a spin S higher than S = 1/2 one has to evaluate the parameter n
defined by (136). It can be derived in the same way as (Szi) and (Sxi) by the use
of (135):
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where the function GS(x) also depends on the spin value S. When S = 1, for
example, it is given by

where y is defined by (164).
As discussed in the previous sections, various magnetic properties of the

spin-S transverse Ising model can be derived from these relations. However, fur-
ther development becomes untractable and consequently we have to introduce
some approximation. Then, the simplest approximation is also to introduce the
decoupling approximation, like (94). Using the decoupling approximation and tak-
ing account of the fact that Jij is given by J for nearest neighbors, the longitudinal
and transverse magnetizations as well as the parameter ńI are given by

where z is the coordination number.
Now, in order to investigate the phase diagram of a spin-S transverse Ising

model, one must notice the following facts. In a finite transverse field, the
Szi component of the system is disordered at high temperatures, but below a transition

temperature T'c it orders, so that mz ≠ 0.0 and the direction of the moment
changes continuously, although there is an order with mx ≠ 0.0 at all temperatures.
From Eqs. (173) and (174), therefore, the second-order phase transition line is
determined by solving the coupled equations

In particular, for S = 1/2 the paramete  is given by = 1/2, so that when Ω
= 0.0 Eq. (176) reduces to (145), which is nothing but that for the spin-1/2

Ising model in the Zernike approximation.
At this place, let us show some typical results especially for the spin-1/2

transverse Ising model, in order to compare them with those obtained from the
MFA, the high-temperature series expansion (SE) and the renormalization-group
(RG) methods [35]. Figure 5 shows the variation of 7'c versus Ω in the spin-1/2
transverse Ising model on the square lattice (z = 4). The critical temperature Tc
gradually decreases from its Ising value at Ω = 0.0 and rapidly vanishes when
the transverse field approaches some critical value Ωc. For comparison, the critical
values of Ωc obtained from such methods as well as the present framework (EFT)
are collected in Table IV. On the other hand, the thermal behaviors of the longitu-
dinal and transverse magnetizations in the system are given in Fig. 6 by selecting
the two values of Ω (Ω = 0.1J and Ω = 0.3J). The results clearly express that
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the larger the transverse field, the smaller the longitudinal magnetization; the role
of the transverse field is essentially to inhibit the ordering of the Si component.
Furthermore, it is worth to compare the EFT results with those of the MFA. The
MFA results are plotted in the figure as the dashed lines. The present results for
mx are qualitatively different from the MFA behavior; below the transition tem-
perature of mz the transverse magnetization mx is very sensitive to temperature,
in contrast with the constant behavior predicted by the MFA, namely (166). Sim-
ilar behavior is also reported in the thermal variation of m x obtained from the
Monte Carlo calculations for the special case of S  = ∞ [36].

Finally, one should notice that the effects of transverse field on the critical
temperature, the longitudinal and transverse magnetizations in the higher spin
transverse Ising systems are very similar to those of the spin-1/2 transverse Ising
model. In particular, the critical value Ω c may increase with the increasing spin
value S.

9. Concluding remarks

In the present work, by making use of exact (or approximate) spin relations
and taking advantage of the differential operator expansion technique, various Ising
spin systems have been discussed, although the Potts model has not been included
(see [37]). We have seen that the differential operator technique affords us the
opportunity of obtaining fairly reliable information concerning such systems, even
when the simplest decoupling approximation is used for the treatment of multispin
correlation functions. While the formulations given in this work are applicable to
the Ising spin systems without any disorder, it has been also clarifled that they can
be successfully applied to disordered spin systems. In a disordered spin system,
magnetic atoms are usually frozen at their fixed positions, where a certain disorder
can be included at each site or bond. For such a quenched disorder system, the
thermally averaged quantity (X) is a functional of some set of disorder included
in it. That is to say, it is assumed to calculate the spin sum (since the system
is assumed to be in thermal equilibrium) and then to average the quantity over
some disorder parameters. In other words, we assume that any correlation between
spin and random averages is absent in the system. Mathematically, the physical
quantity X in a disordered system can be expressed as

where (• • •)r refers to the random average over all possible configurations of the
random parameters {R} and P({R}) is the probability distribution function.

In a spin-1/2 Ising system with random bonds, for example, the atomic
magnetization based on the decoupling approximation (30) can be then rewritter
in the form [38]:

Here, (. • .)r denotes the random bond average defined by



Differential Operator Technique in the Ising Spin Systems 	 735

In particular, when H = 0.0 and P(Jij) is given by

for nearest-neighbor sites, it corresponds to the standard bond dilution problem.
The averaged magnetization of the bond-diluted spin-1/2 Ising ferromagnet is
given by

Thus, the critical temperature Tc can be determined by solving

The critical temperature Tc depends on p, decreases with the decrease in p and
reduces to zero at a critical concentration P*B of the bond percolation (for example,

P*B= 0.4284 forz =4). As noted in Sec. 4.1, the result is just that which is obtained
if the Matsudaira first-order approximation is used for bond dilution. The fact also
includes that the formulation is superior to the standard MFA with P*B = 0.0.

On the other hand, the same equation as (183) can be derived even for the
site dilution problem, when the decoupling (or the Matsudaira) approximation
is used [39]. It means that the critical concentration P*B  of the site percolation
is equivalent to the value of  P*B. Various methods noted in Sec. 4.1, which are
essentially equivalent to the decoupling approximation (30), have yielded unsatis-
factory results (P*B =P*S) for the percolation limit, since the exact calculations for
bond and site diluted spin-1/2 Ising systems prove the relation of P*B < P*S. Thus,
an improvement in the configurational averaging, beyond the simplest decoupling
approximation, seems to be necessary for the bond-diluted model, in order to get
a correct percolation limit.

The differential operator technique has also been applied to study various
situations in disordered spin systems, including spin-one Ising systems with ran-
dom bond and crystal-field interactions. In particular, the spin-one Ising model
with a random crystal-field interaction should be referred here, since some out-
standing results may be obtained in going from the MFA to more sophisticated
theories [40]. The Hamiltonian of the model is defined, instead of the BC model
(86), by

where Di is a random crystal-field constant distributed according to a probability
distribution function P(Di), such as

Within the framework of the MFA, several authors have examined the phase
diagram of the model and predicted some fascinating phenomena, especially for
large values of p [41]. However, these results are different from those based on the
EFT any do not provide any insight into the nature of possible phase transition
lines. The reason is as follows. When D = ∞ (or D is larger than DO, Np spins
among the total number N of spins are in the Szi= 0 state and N(1 — p) spins
behave as the usual Ising spins with D = 0.0. Therefore, the spins in the Szi= 0
state simply correspond to the introduction of Np non-magnetic atoms in the
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system, since they are inactive as regards producing ferromagnetic ordering. The
situation is very similar to that of dilution problem. Thus, in order to treat the
model system (184), a theory better than the MFA is required. In particular, the
re-entrant phenomenon due to the crystal-field disorder has been predicted by the
use of the EFT [40].

As reviewed in this work, the differential operator technique in Ising spin
systems has a simple mathematical stucture. Through some sort of successive
approximation scheme, the effects of correlations can explicitly and systematically
be included. This procedure, without introducing mathematical complexities, pro-
vides results which are quite superior to those obtained within the standard MFA.
As noted in Sec. 7, the method can be extended to an Ising problem with a higher
spin value.

In particular, the magnetization of a ferromagnetic system can be expressed
in a polynomial form, which is well illustrated by employing the simplest decou-
pling approximation, such as (30). Because of the fact, the formulations in Sec. 4
have been applied to study many other interesting problems in surface magnetism,
thin films and multilayers which are now current topics of magnetism [42]. Here,
notice that these works are discussed on the basis of spin-1/2 Ising model and its
variants, such as the Mills model in surface magnetism [43]. On the other hand,
recent experiments show that there exists a very strong anisotropy field acting on
spins in the surfaces of thin films. The role of surface anisotropy has been proved
to be of paramount importance in determining the magnetic properties of surfaces
and thin films [44]. In magnetic multilayers, detailed analyses of the experimental
data reveal that the interfaces normally exist and they are constucted by some
mixed layers with a random distribution of the two types of magnetic atoms con-
sisting of the multilayer. Therefore, the standard theoretical models which treat
magnetic multilayers consisting of two spin-1/2 ferromagnetic layers with different
bulk properties should also be modified, in order to include the effects of the dis-
ordered interfaces. The influences of the surface anisotropy in surface magnetism
and thin films as well as the disordered interfaces in magnetic multilayers on their
magnetic properties can be treated by the use of formulations given in Secs. 4-8
[45].

Acknowledgment

This review comes out in collaboration with many coworkers. Especially, the
author wishes to thank I.P. Fittipaldi for many enlightening and useful discussions
as well as for sending the preprint which was very useful in writing Sec. 4.3.

References

[1] H.B. Callen, Phys. Lett. 4, 161 (1963).
[2] M. Suzuki, Phys. Lett. 19, 267 (1965).
[3] N. Matsudaira, J. Phys. Soc. Jpn. 35, 1593 (1973).
[4] R. Honmura, T. Kaneyoshi, J. Phys. C 12, 3979 (1979).



Differential Operator Technique in the Ising Spin Systems 	 737

[5]F.C.SáBarreto, I.P. Fittipaldi, Rev. Bras. Fis. 11, 745 (1981).
[6] T. Kaneyoshi, H. Beyer, J. Phys. Soc. Jpn. 49, 1306 (1980).
[7] F. Zernike, Physica 7, 565 (1940).
[8] T. Kaneyoshi, Phys. Lett. A 76, 67 (1980).
[9] J. Mielnicki, T. Balcerzak, V.H. Truong, G. Wiatrowski, L. Wojtczak, J. Magn.

Magn. Mater. 58, 325 (1986); T. Balcerzak, J. Magn. Magn. Mater. 97, 152 (1991).
[10] N. Boccara, Phys. Lett. A 94, 185 (1983).
[11] A. Benyoussef, N. Boccara, J. Phys. (France) 44, 1143 (1983); A. Benyoussef,

N. Boccara, M. Saber, J. Phys. C 18, 4275 (1985).
[12] M.E. Lines, Phys. Rev. B 9, 3927 (1974).
[13] L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936).
[14] T.H. Berlin, M. Kac, Phys. Rev. 86, 821 (1952).
[15] T. Kaneyoshi, I.P. Fittipaldi, R. Honmura, T. Manabe, Phys. Rev. 1124, 481 (1981);

T. Kaneyoshi, I. Tamura, Phys. Rev. B 25, 4679 (1982); R. Honmura, Phys. Rev
B 30, 348 (1984).

[16] L. Onsager, Phys. Rev. 65,197 (1944); M.E. Fisher, Rep. Prog. Phys. 30, 615 (1967).
[17] A. Bobak, M. Jaščur, Phys. Status Solidi B 135, K9 (1986); P. Tomczak, E.F. Sar-

mento, A.F. Siqueira, A.R. Ferchmin, Phys. Status Solidi B 142, 551 (1987).
[18] J.O. Indekeu, A. Maritan, A.L. Stella, J. Phys. A 15, L291 (1982); Phys. Rev. B

35, 305 (1987).
[19] I.P. Fittipaldi, D.F. DeAbuquerque, J. Magn. Magn. Mater. 104-107, 236 (1992);

I.P. Fittipaldi, unpublished work, 1992.
[20] T. Kaneyoshi, I.P. Fittipaldi, H. Beyer, Phys. Status Solidi B 102, 393 (1980).
[21] M. Blume, Phys. Rev. 141, 517 (1966); H.W. Capel, Physica 32, 966 (1966).

[22] M. Blume, V.J. Emery, R.B. Griffiths, Phys. Rev. A 4, 1071 (1971).
[23] I. Tamura, T. Kaneyoshi, Prog. Theor. Phys. 66, 1892 (1981).

[24] A.F. Siqueira, I.P. Fittipaldi, Physica A 138, 592 (1986).

[25] T. Kaneyoshi, J. Phys. C 19, L557 (1986).
[26] I.P. Fittipaldi, T. Kaneyoshi, J. Phys., Condens. Matter 1, 6513 (1989).

[27] J.W. Tucker, J. Magn. Magn. Mater. 80, 203 (1989).

[28] T. Kaneyoshi, J. Magn. Magn. Mater. 98, 185 (1991).

[29] Y.L. Wang, C. Wentworth, J. Appl. Phys. 61, 411 (1987).

[30] T. Kaneyoshi, J.W. Tucker, M. Jaščur, Physica A 186, 495 (1992).

[31] T. Kaneyoshi, M. Jaščur, Physica B 179, 317 (1992); Phys. Rev. B 46, 3374 (1992).

[32] F.C. SáBarreto, I.P. Fittipaldi, B. Zeks, Ferroelectrics 39, 1103 (1981); F.C.
SáBarreto, I.P. Fittipaldi, Physica A 129, 360 (1985).

[33] E.F. Sarmento, I. Tamura, L.E.M.C. de Oliveira, T. Kaneyoshi, J. Phys. C 17,
3195 (1984); I. Tamura, E.F. Sarmento, T. Kaneyoshi, J. Phys. C 17, 3207 (1984);
T. Kaneyoshi, E.F. Sarmento, I.P. Fittipaldi, Phys. Rev. B 38, 2649 (1988); 1.P. Fit-
tipaldi, E.F. Sarmento, T. Kaneyoshi, Physica A 186, 591 (1992).

[34] T. Kaneyoshi, M. Jaščur, I.P. Fittipaldi, unpublished work, 1992.



738 	 T. Kaneyoshi

[35] R.J. Elliot, C. Wood, J. Phys. C 4, 2359 (1971); R.R. dos Santos, J. Phys. C 15,
3141 (1981); J. Phys. A 14, L179 (1981).

[36] P. Prelovsek, I. Sega, J. Phys. C 11, 2103 (1978).
[37] R. Honmura, E.F. Sarmento, C. Tsallis, 1.P. Fittipaldi, Phys. Rev. B 29, 2761 (1984).
[38] R. Honmura, A. Khater, I.P. Fittipaldi, T. Kaneyoshi, Solid State Commun. 41,

385 (1982); E.F.Sarmento, C. Tsallis, Phys. Rev. B 27, 5784 (1983).
[39] T. Kaneyoshi, I. Tamura, E.F. Sarmento, Phys. Rev. B 28, 6491 (1983).

[40] T. Kaneyoshi, J. Mielnicki, J. Phys.' Condens. Matter 2, 8773 (1990); T. Kaneyoshi,
Phys. Status Solidi B 170, 313 (1992).

[41] A. Benyoussef, T. Biaz, M. Saber, M. Touzani, J. Phys. C 20, 5349 (1987);
C.E.I. Carneiro, V.B. Henriques, R.A. Salinas, J. Phys., Condens. Matter 1, 571
(1989); N. Boccara, A. Elkenz, M. Saber, J. Phys., Condens. Matter 1, 5721 (1989).

[42] T. Kaneyoshi, Rev. Solid State Sci. 2, 39 (1988).

[43] D.L. Mills, Phys. Rev. B 3, 3887 (1971).

[44] T. Kaneyoshi, J. Phys.' Condens. Matter 3, 4497 (1991).
[45] T. Kaneyoshi, M. Jaščur, J. Magn. Magn. Mater. 118, 17 (1993); A. Khater, G. Le-

Gal, T. Kaneyoshi, Phys. Lett. A 171, 237 (1992); T. Kaneyoshi, T. Balcerzak,
unpublished work, 1992.


