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We deal with spin-wave propagation in two antiferromagnetically aligned
sublayers forming one bilayer film owing to the antiferromagnetic exchange
coupling assumed to exist at the film interface. We get the following picture:
as the spin wave traverses the interface, the creation of a spin-reversal in
the one sublayer becomes an annihilation in the other sublayer. This feature
is expressed by the non-conventional type of normalization condition of the
spin-wave amplitudes.
PACS numbers: 75.70.-i, 75.50.Ee

1. Introduction

In the last few years considerable interest has been devoted to the physi-
cal properties of magnetic multilayers with a view to their possible applications
in various electronic (in particular — memory) devices. One cucial point in the
understanding of such systems is the case of antiferromagnetic coupling at the
interface between two magnetic layers. This system has been studied earlier for a
slab adsorbed on a semi-infinite [1] substrate and also for semi-infinite superlat-
tices [2-5]. A new exciting surface phase transition was, in particular, predicted
[2]. Although the magnon spectum was studied previously in the above system
[4], no such work has appeared (to our knowledge) for the more elementary system
formed by a bilayer with antiferromagnetic coupling. This system is interesting by
itself and has already been approached from the experimental point of view [6-7].
It is also interesting as the elementary brick for more complex composite mag-
netic systems. We thus shall proceed to a study of the magnon frequencies within
the simplest possible model — a bilayer film with antiferromagnetic interfacial
coupling.
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2. The model

We consider a film consisting of two ferromagnetic materials in the shape of
thin layers (sublayers A and B) of homogeneous stucture extending unboundedly
in directions parallel to the surface of the film. In general, the two sublayers are
assumed to have different magnetic properties; however, for simplicity, we shall
assume that their crystallographic stuctures are identical. The two sublayers form
one magnetic system owing to the antiferromagnelic exchange coupling 'assumed
to exist at the interface separating them.

On the above assumptions, atoms lying in the same lattice plane parallel to
the surface (to be termed in brief "a plane") are in identical physical conditions,
i.e. they are mutually equivalent. The two sublayer surface planes, which form
the interface, will be referred to as the "interface planes". An atom is labelled by
an index  lj, where l is a number denoting the plane, and j is a twodimensional
vector lying in the plane of the film. As it is shown in Fig. 1, the index l  takes the
following values: l = 0 (surface plane A), l = 1, 2, ...N — 2 (internal planes A),

l = N -1(interface planeA), l=N(interfaceB), l = N +1,N +2, ...L —2
(internal planes B), l = L - 1 (surface planeB).

Starting from the static problems we assume, in a semi-classical approxima-
tion, that a spin present in a lattice site can be represented as Slj = SA  for
sublayer A and Slj = SB - B for sublayer B, where SA;B are the respective spin
numbers (in ħ units), and, A;B denotes a unit vector in the quantization direction
shared by all the spins of the sublayer A or B, respectively. We chose the system of
coordinates in such a way that the xy-plane is parallel to the film surface and the
z-axis is perpendicular thereto. We assume that all the spins are aligned parallel
to the film, i.e. z ≡ 0  consequently, the sublayer magnetization directions are
restricted to the xy-plane.

In the next Section we shall perform calculations of the dynamical properties;
this will be done within the framework of the Heisenberg localized spin model
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assuming exchange (nearest-neighbour) interaction and a Zeeman Hamiltonian in
a standard form

where the first summation extends over pairs of neighbouring spins; the exchange
integral Jll ', between nearest neighbours situated respectively in planes l and l ',
is assumed to be Jll' = JA if both interacting spins belong to the sublayer A
Jll' = JAB if they belong to different sublayers, and Jll' = JB if they belong to
the sublayer B. The interface coupling exchange integral is assumed to be of the
antiferromagnetic type, i.e. JAB < 0. The external field H takes any orientation
within the xy-plane and one assumes that  and ,  are directed, respectively,
parallelly and antiparallelly to the direction of that field. To establish the condi-
tions under which such an "antiferromagnetically aligned" (AF) ground state of
the bilayer system is stable, we require its energy to be lower than the ground
state energy of the respective "ferromagnetically aligned" (FF) bilayer film (for
which - A≡B). This requirement leads to the following stability condition to be
satisfied by H and JAB for the AF aligned bilayer film (i.e. for which B = -- A) :

where z ┴denotes the number of nearest neighbours situated in an adjacent plane,
and (N - L) is the thickness of the sublayer B (in lattice units). The physical
meaning of the inequality (2) is the following: let us note that on its right-hand
side we have the absolute value of the energy (calculated per interface spin of
the sublayer B) of the respective exchange coupling through the interface, whihe
the left-hand term represents the Zeeman energy of the spin SB , multiplied by the
number of atomic planes in the sublayer B. Therefore, it follows from the condition
(2) that our AF bilayer ground state will be stable if the value of the external
field is properly matched to the actual values of the antiferromagnetic interface
coupling and the thickness of the sublayer B; the total (positive) Zeeman energy
of the sublayer B should not exceed the (negative) energy of coupling between the
interface spins of the sublayer B and the interface spins of the sublayer A.

3. Spin waves

We diagonalize the Hamiltonian (1) applying the procedure described in
detail in Ref. [8]. From the diagonalization procedure it follows that the spin-wave
functions have the following form:

where k║is the wave vector lying in the film plane, and k ┴is a z-component of
the wave vector in the direction perpendicular to the film plane. While the former
quantity is a tue wave vector describing propagation in the plane of the film,
the quantity k ┴ is a quantum number determining the variation of the amplitude
ul(k┴) of the spin-precession cone in the direction perpendicular to the film plane.
The spin-wave mode amplitudes, ul≡  ul(k ┴),have to satisfy the appropriate
set of 2L homogeneous equations; however, it turns out that, in fact, this set of
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equations consists of two, mutually independent sets of L equations. Let us write
explicitly the first set of the two

where we have introduced the following notations:

The second set of equations is to be obtained from Eqs. (4a) by replacing the
eigenenergies E (present in all the diagonal terms) by "—E":

Within the framework of our model, only such orientations of the fihm surface
can be considered at which the nearest neighbours of a given spin belong to the
same plane and the two closest lying planes. In cubic lattices, the orientations of
this kind occurring most commonly in practice are: sc(001), fcc(001) and bcc(001).
The relevant stuctural factors are defined as follows:

where δ|| denotes any vector connecting a site in a plane l with its z|| nearest
neighbours in the same plane, andδ ┴ denotes the projection onto the xy-plane of
any vector connecting a site in the plane  t with its z ┴nearest neighbours in the
plane l +1. In Table the structural factors for all the surface orientations considered
here are assembled (the choice of respective k1, k2 coordinates is shown in Fig. 2).

The two sets (4a) and (4b) obviously form a set of 2L equations with
2L unknowns, notwithstanding the fact that the problem under consideration is
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L-dimensional. Consequently, while solving these sets of equations one obtains 2L
eigenvalues of E which can be ordered in L pairs consisting of one positiυe and one
respective negative value: E and —E. In the spin-wave formalism adopted here,
the quantity E is the energy of a given spin-wave mode. Of course, physically
meaningful solutions correspond to positive E values only, since the requirement
of positive E is equivalent to considering elementary excitations of positive energies
only. In this way we satisfy the requirement that the selected ground state shall be
a state of stable equilibrium of the system. The two sets of solutions obtained (i.e.
corresponding to positive eigenenergies and negative ones, respectively) cannot
simultaneously fulfill the same normalization conditions. Thus, the normalization
conditions read (see [8])

where +1 corresponds to solutions of the set (4a) and —1 to solutions of (4b), or
vice versa.

To characterize the spin-wave modes of a bilayer film it is necessary to in-
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troduce two perpendicular wave vector components, namely  k A┴andkB┴ , each of
the two being assigned to one particular sublayer. They are to be defined by the
following equalities:

This allows us to express the solutions ul in terms of the respective wave numbers

k

A┴and k

B┴

The respective spin-wave mode functions can be found by applying one of the fol-
lowing three different approaches: the recurrent interface rescaling approach [9, 10],
the interface response-rescaling approach [11], or the transfer matrix approach [12].

By means of Eqs. (8) and (5), the spin-wave energy E can be expressed by
either of the perpendicular wave numbers introduced above. One easily finds that
there exist four energetical branches, but only two of them correspond to physical
solutions with E > 0; these are as follows:

The higher branch E1 corresponds to the excitation of a spin wave, which originates
in the reversal of a spin at a given node of the spin sublattice A, whereas the
lower branch E2 corresponds to the collectivized spin reversal originating in the
sublattice B.

4. Conclusions

The above derived formulae for the spin-wave energies permit the following
interpretation: the set of equations (4a) describes the collective propagation of spin
reversal produced in the sublattice A (as indicated by the energy term +gμBH);
whereas inversely, the set of equations (4b) describes the propagation of spin re-
versals produced in the sublattice B. We should draw attention to the following,
hitherto undiscussed feature of the propagation of the spin-wave process in anti-
ferromagnetically aligned bilayer fllms, namely: a collective event of creation of a
spin reversal in a given sublattice becomes — when it reaches the other sublat-
tice — a collective process of annihilation of an opposite spin reversal. Thus, the
propagation of a spin wave in an AF bilayer is in fact a very remarkable process;
in the one sublattice it causes an increase in the z-component of the spin, whereas
it causes a decrease of the z-component in the other. This fact is expressed by the
non-conventional type of normalization condition (Eq. (7)) we had to apply to the
solutions of the sets (4a, b).
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