
Vol. 83 (1993) 	 ACTA PHYSICA POLONICA A	 No. 5

Proceedings of the French-Polish Colloquium on Surface Physics, Malinka,92, Ruciane

SOME STATISTICAL PROPERTIES
OF THE ROUGH SURFACE*
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The temperature induced roughening of the solid surface is described
by means of a discrete Gaussian model, using integral operator technique.
On the basis of the exact statistical identities, the formulae for several local
moments, i.e. (hi), ((hi) 2 ) and (hihj) are derived. The results of computer
calculations, including surface specific heat, are presented for three lattices
with z = 3, 4, and 6. In discussion, some further applications of the presented
method are suggested.
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1. Introduction
The idea of surface roughening was developed originally by Burton and Cabr-

era [1, 2] in 1949. They represented the crystal surface with vacancies and adatoms
by a twodimensional Ising model and studied the stucture fluctuations at the
Ising critical temperature.

The generalised model of Burton and Cabrera is commonly known as a
solid-on-solid (SOS) model [3, 4]. At present, there is a variety of SOS models,
one of the most important is a discrete Gaussian (DG) model introduced by Chui
and Weeks [5, 6] in 1976.

A great deal of theoretical work has been done to clarify the existence and
the nature of roughening phase transition within SOS models. Most of the results
were obtained using renormalization group (RG) approach and Monte Carlo (MC)
computer simulations. We will refer here to the review articles [6-10] summarising
the main theoretical results.

The general conclusion from these papers is that, on a large scale, the
height-toheight correlation function should diverge at some temperature and re-
mains infinite above it. The phase transition is of continuous character and, in a
contrast to the Ising models, does not exhibit any peak in the specific heat. As it
has been suggested, this phase transition originates from the fact that the edge
free energy of a step on a crystal facet becomes zero at some temperature. This,
in turn, makes possible to move the steps freely, and the reference level on the
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facet is being lost. The crystal is called "rough" above the phase transition tem-
perature and "smooth" below it. In particular, for DG model, the phase transition
temperature is found to be kTR/J 1.45 for (001) face [6]. It has been shown
that, in the most studied cases, the roughening phase transition is equivalent to
the Kosterlitz—Thouless type [11].

The experimental observation of the roughening transition is difficult for
several reasons. First of all, the crystals produced during growth are metastable
and the relaxation time to obtain the equilibrium shape increases rapidly with
the crystal size. This makes difficult to produce crystals of the equilibrium shape
having sufficiently great size for observations [9]. For this reason, the experiments
are usually carried out on the macroscopic metastable vicinal surfaces, on which
the local equilibrium of the step configuration is achieved.

It turns out that for the most observable crystal facets the roughening tran-
sition temperature is out of physical range of the surface existence, i.e. is above
the melting point. The lowering of the roughening transition temperature can be
achieved when the high-index (vicinal) surfaces, which have relatively small atomic
density, are used for observation [9].

Because of those difficulties, the experimental works concerning roughening
have started only at eighties. Since then, many crystal surfaces have been studied.
For instance, the 4He solid-superliquid interface [12], the vicinal surfaces of Cu
and Ni [13-16], Pt (111) surface [17], GaAs (001) and Si (001) surfaces [18], and
recently, Pb (110), Au (111) and Au (100) surfaces [19] have been investigated.

For those experiments many modern techniques have been involved, namely:
grazing incidence X-ray scattering (GIXS) [13], helium beam diffraction [14, 15],
thermal energy atom scattering (TEAS) [16], pulsed molecular beam epitaxy
(MBE) [17], reflection high-energy electron diffraction (RHEED) [18], and X-ray
photoelectron diffraction [19]. Another surface technique, low-energy electron dif-
fraction (LEED), has been used for studying the growth and ordering of chemi-
sorbed layers [20].

As is seen from this very short survey, the surface roughness has been in-
tensively studied both theoretically and experimentally. The aim of thi8 paper is

'further theoretical study of the rough surface, but rather on a microscopical scale
than on large distances. As noted in [21], the rough interface can be considered
as a long-distance property and "on small scales, the interface might look quite
smooth". To study this more quantitatively a new method will be presented. It
will enable to calculate some basic local parameters of the disordered surface in a
wide range of temperatures.

In Sec. 2 of this paper, the discrete Gaussian model [6] will be applied for the
crystal surface, which is assumed to be flat (no terraces) at zero temperature. On
the basis of general method [22] the exact statistical identities for DG Hamiltonian
will be derived. Then, an integral operator technique will be adopted, which en-
ables the autocorrelation function to be calculated, as well as other neighbouring
correlations. As a result, the surface specific heat will be calculated in the frame
of this method. In Sec. 3, the numerical results, as well as their discussion, will be
presented.
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2. Theory

2.1. General formulation

The discrete Gaussian Hamiltonian is of the form [6]:

where ħi = 0, ±1, ±2, ... represents the height of the i-th atomic column, and
the summation over (i, j) concerns all nearest neighbours (n.n.). We assume that
Jij = J for n.n., and we separate the Hamiltonian into two parts

is the smallest cluster Hamiltonian. In Eq. (3), by z we denote a number of lateral
column8 (n.n.) interacting with the central i-th column.

For any classical cluster Hamiltonian, Hcl , we can make use of the general
statistical identity of the form [22]:

which is exact. By hl we denote any function of statistical variables from inside
the cluster, and { f) is an arbitrary function defined outside it. In particular, we
can assume

Then, from Eq. (4) we obtain the following identity:

Substituting k = 1, 2 in Eq. (6) we have the corresponding identities for the first
two moments

and

One has to point out that identities (7) and (8) are exact within DG model.
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To calculate the statistical average on the right-hand side of Eqs. (7) and
(8), we will make use of the integral operator method, presented in [22]. Let us
denote for the simplicity

Then, the mean value of an arbitrary function F(γi) can be written as

Dirac,s delta function is given by its integral representation

Substituting (I1) into (10) we obtain

From Eq. (12) we see that the problem of the statistical average calculations of
any function F(γi) can be reduced to the evaluation of the expression

where hi are the nearest neighbours of the i-th column.
All formulae written until now are exact. Now, in the first approximation,

we will assume a decoupling, according to which the j-th columns, belonging to
the first coordination sphere, are uncorrelated with each other, i.e. we have

In this approximation, from Eq. (12), the statistical average of any function F(γi )
can be written as

where (h) df = (hi) = (hj)

Formula (15) is general, and can be applied for the right-hand side of iden-
tities (7) and (8). In the following, we will make use of the expansion

It is seen from Eq. (16) that central moments of the k-th order have to be taken
into account. This can be done by the appropriate decoupling procedure which
will be described below.
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2.2. Molecular field approximation (MFA)

In this simplest approximation, we assume that all central moments are equal
to zero, namely

and from (16) we obtain

Then, Eq. (15) can be written in the form

With the help of Eq. (19), the basic identities (7) and (8) can be written in MFA
as

2.3. Gaussian approximation

In approximation better than MFA, the central moments are given by

and

where

Making use of Eqs. (21) and (22) the summation in Eq. (16) can be performed,
and we obtain

Equation (29) can be compared with the corresponding Eq. (18) obtained in MFA.
We see from (24) that when the standard deviation approaches zero (σ→ 0), then
the Gaussian approximation reduces to MFA. Substituting Eq. (24) into (15) we
obtain

The integration over t-parameter in Eq. (25) can be performed analytically, since
we make use of the mathematical formula
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Then, from Eqs.(26) and (25) we will obtain

Formula (27) can be then used for the evaluation of right-hand sides of Eqs. (7)
and (8) in Gaussian approximation. Finally, we obtain

where

It is seen that (28) and (29) are two coupled equations which have to be solved
numerically. In the above equations the self-consistency conditions (h) = (hi) =
(hj) and (h 2 ) = ((hi) 2 )= ((hj) 2 ) have been assumed.

2.4. The n.n. correlation function

Since we are interested in obtaining the formula for n.n. correlation function,
we shall return to the general identity (4). Substituting {f } = hj (j  i) and

fcl= ħi we obtain (hihj) = F(γi)), and we can basically follow the whole route
described in this section. However, now the new autocorrelation function will occur
in the neighbourhood of the i-th lattice site. Namely, analogously to Eq. (14) we
can write

and we find in Gaussian approximation

Making use, of the relations (32) and (24), Eq. (31) can be presented as

Now, Eq. (33) enables us to calculate (hjF(γi)) (again making use of the formula
(26)). We find
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Finally, for the n.n. correlation function we obtain in Gaussian approximation

where (h) and σ are given by Eqs. (28)-(30).

2.5. The surface specific heat

The surface contribution to the specific heat can be calculated from the
temperature dependence of the surface energy. Recalling the Hamiltonian (1), we
have

and the mean energy per one column is then given by

where N is a total number of atomic columns, forming the surface. The specific
heat per one column is then defined as

Because both (ħ 2 ) and (hihj) functions are calculated vs. dimensionless variable
kT/Jz, it is convenient to denote it by

and instead of Eq. (37) we will have the formula

Equation (39) will be then used for the numerical calculations of the surface spe-
ciflc heat, once we have calculated the autocorrelation (h 2 ) and n.n. correlation
function (hihj) (see Eqs. (28)—(30) and (35)).

2.6. High-temperature approximation

Equations (28)—(30), (35) and (39), obtained in Gaussian approximation, can
be solved numerically for any temperature. However, for kT/Jz > 1 we can sub-
stitute the DG model by a continuous one, and the summations in Eqs. (28)—(30)
and (35) can be then replaced by the integration
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In this approximation, the integrals over dn, as well as over dω, can be easily
performed analytically. Further, we will assume that the total number of atoms
is constant (i.e. no evaporation or deposition process takes place) and we obtain
from Eqs. (28)-(30), with the help of (40):

(h) = 0	 (41)

and

for Gaussian approximation. Correspondingly, for MFA one obtains from Eq. (20):

For the n.n. correlation function we will have the high-temperature approximation
of Eq. (35) in the form

At last, for the surface specific heat, from Eqs. (39), (42) and (44) we find

The numerical results based on the formulae derived here, will be presented in the
next section.

3. The numerical results and discussion

We will consider the simplest physical situation, when the total number
of atoms is constant, and the thermally induced roughness is only due to the
stochastic displacement of atoms, perpendicular to the crystal surface. Since this
displacement has the same probability up and down, the mean column height
remains also constant. One of the solutions is (h) = 0, which satisfies Eqs. (19) for
MFA and (28) for Gaussian approximation. We will assume that (ħ) = 0 defines
the position of thermally unperturbed surface for very low temperatures. With the
above assumptions made, the moan square of the column height, 0 2 ), is equal to
σ2, and can be considered as a roughening parameter for the surface.

In Fig. 1 the (h 2 ) function, calculated from Eq. (20) in MFA, is presented vs.
temperature. One can see that using the dimensionless variable α = kT/Jz, the
shape of the curve is not dependent on the z-number, i.e. on the crystal facet. The
dashed line in Fig. 1 is an extrapolation of the high-temperature approximation
(cp. Eq. (43)). We see that the numerical calculations based on Eq. (20) fit well
the high-temperature approximation, if only kT/Jz > 1. This temperature range
corresponds to continuous Gaussian model and represents the behaviour of a clas-
sical oscillator. On the other hand, in the low temperature region, the DG model
differs markedly from a continuous one, as is seen in Fig. 1. It is seen also that
whereas the temperature increases from T = 0, the surface remains quite smooth
until kT/Jz P.1 0.1.
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In Fig. 2 the (h 2 )-parameter is calculated from Eq. (29), in Gaussian approx-
imation. Three curves for z = 3, 4, and 6 are presented, corresponding to surface
having the honeycomb, square, and triangular symmetry, respectively. In this case,
although the shape of the curves is similar to that of MFA (dashed curve), we can
distinguish between different crystal facets. All these curves lie above the MFA
result, and the smallest z-number corresponds to the highest values of (ħ 2 ). This
illustrates that the surface with smaller coordination number can become rough
more easily than the surface with higher z, which is more stable. The greatest
differences in values for these curves are in high-temperature region, α > 1, which
can be predicted well by Eq. (42).

We can conclude from Fig. 2 that the Gaussian approximation is much more
accurate than MFA, since autocorrelations of the atomic columns are then taken
into account more properly. However, for very small temperatures, both approxi-
mations are of the same validity, because all correlations are then negligible.
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In Fig. 3 the n.n. correlation functions (ħi hj) are presented vs. α, for the same
z-numbers as in Fig. 2. The curves were calculated in Gaussian approximation,
from Eq. (35). Comparing Figs. 3 and 2 we see that the values of (hihj) are much
smaller than corresponding autocorrelations. One can note that in high-tempera-
ture region the magnitude of n.n. correlations is reduced by factor z in comparison
with (h 2 ) (see Eq. (44)). Moreover, for different z, the correlations are relatively
more spread than autocorrelations. Both (hihj) and (h 2 ) are next used for the
specific heat calculations.

The surface specific heat per one lattice site, in Boltzmann constant units,
is presented in Fig. 4. Three lattices with z = 3, 4, and 6 are examined. We found
that the specific heat has a finite maximum at kT/Jz = 0.265, 0.286, and 0.312 for
these three lattices, respectively. One can note that this maximum becomes flatten
when z-number is increased. For high temperatures the specific heat is constant
and becomes independent on structure (cp. Eq. (45)). This fact again reminds the
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property of a classical oscillator. On the other hand, for T → 0, the vanishing of
the specific heat is in agreement with the principles of thermodynamics.

The presented numerical results concern the properties of the rough surface
on a microscale. Using our method we did not find any singularity in (h 2 ) depen-
dence on temperature. However, it is possible that for the surface which is terraced
in the ground state, a long-distant pair-correlation function will diverge at some
temperatures. Therefore, our result does not exclude the ph ase transition of the
Kosterlitz-Thouless type for vicinity surfaces. The illustration for such situation
is given in [8], where the results of MC simulations are compared for (001) and
vicinal surfaces.

The experimental study of atomic roughening of Ge (001) surface, performed
with X-ray diffraction [23], give a support for the validity of our model. In the
paper [23], the simple three level (+1, 0, —1) SOS model has been used to explain
satisfactorily the observed creation of adatoms and vacancies on that surface.

In another work [24] the continuous Gaussian model (spring model) has been
adopted . for studying the surface roughness of ternary alloys. The results obtained
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in [24] by numerical simulations are in qualitative agreement with the predictions
of the present paper and can serve as a good illustration for our model at high
temperatures.

In conclusion, we see that the presented method of the surface roughness
description can be adopted for various crystal surfaces in the whole temperature
region. Using the simple DG model we can investigate the basic statistical proper-
ties of the rough surface which, in turn, can be related to the experimental situa-
tion. Although the model considered in this paper is very simple and it serves here
as an illustration of the method rather than for the description of any particular
material, it can be easily extended for some more complex physical situations.

The first improvement on the model can be done after introducing the
quadratic term into the Hamiltonian, which originates from the crystalline anisotro-
py. As we know, the presence of the anisotropy is essential for the surface premelt-
ing phenomena.
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Further improvement may be achieved when the surface disorder is taken into
account, via possible fluctuations of intercolumnar interaction Jij. Those fluctua-
tions play an important role when some impurities are present at the surface.

At last, the surface dynamics can be also introduced into the theory. Us-
ing the concept of chemical potential, we could investigate the surface growth at
different temperatures and under external pressure.

We are convinced that the method outlined in this work will be also useful
for studying the solid-liquid interfaces as well as the roughening of ultra-thin films.

It is obvious that the accuracy of calculations, in the frame of this method,
depends on the correlation decoupling scheme. The possible way to improve this
procedure would be the method of Matsudaira [25] known in magnetism, since
then the successive pair correlations are taken into account. Those correlations,
in turn, can be determined from the series of exact identities, generated by the
formula (4).

The above mentioned problems will be studied in the forthcoming papers.
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