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General theory of nonlinear ferromagnetic resonance is presented for
samples with the usual magnetostatic and exchange boundary conditions
imposed at the sample surface. In such samples the Suhl instabilities and
other nonlinear effects occur due to nonlinear interactions of magnetostatic or
dipole-exchange modes. All relevant types of interactions are included in the
Hamiltonian: with the pumping field, three- and four-mode ones. Analytic
calculation of the Suhl thresholds in the three possible types of instabilities
in perpendicular and parallel pumping is performed for the sample in the
shape of a thin slab.

PACS numbers: 76.50.+g, 75.30.Ds 75.70.-i

1. Introduction

It is well known that in ferromagnetic resonance experiments, both in perpen-
dicular and parallel pumping, if the applied rf field power exceeds some threshold
value, the Suhl threshold [1], time-independent [2] (e.g. appearance of the sub-
sidiary absorption peak, premature saturation of the absorption) and, eventually,
time-dependent [3-5] (autooscillations, period doubling, intermittency, quasi-peri-
odicity, chaotic transients, chaos etc.) nonlinear behavior of the absorption is ob-
served. These effects appear due to nonlinear interactions among magnetic modes
of the sample, excited above their thermal level [I]. If the influence of the sample
geometry on the internal magnetic fields and magnetization is neglected, spin-wave
modes are appropriate ones. Theoretical investigations have shown [1, 6, 7] that
only interactions involving at most four modes are important, and that in the case
of time-dependent signal, though probably an entire manifold of the spin waves
is excited, qualitative agreement with the experiment is obtained in a truncated
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model with only some coupled modes and approximately evaluated coupling coef-
ficients (classical "matrix elements" — see below) [8].

Calculation of these coefficients within the spin-wave approximation, valid
for bulk ferromagnets, e.g. spheres with the diameter ca. 0.5 mm, commonly uti-
lized in the experiments, is tedious, but straightforward [1, 2, 5-7]. With their
values known, it is possible to evaluate the Suhl threshold for a given resonance
configuration [1, 2, 6, 7] or to model the time dependence of the absorption in
the above-mentioned tuncated model (see e.g. [4, 5]). However, some experiments
have been also reported, in which thin films or disks were used as samples. They
were performed either as conventional resonance experiments (the sample placed in
a cavity), or, especially these reported in the Russian literature, with the rf power
provided by a thin metallic antenna, stuck at the sample surface. They included
measurements of the Suhl threshold [9-14] and investigation of the time-dependent
nonlinear phenomena [15-21]. In a thin slab, the spin-wave approximation loses its
validity, because the wavelength of the excited dipole-exchange and magnetostatic
modes (tue modes of the -sample) may be comparable with the sample thickness
and the boundary conditions become important, what makes the calculation dif-
ficult. On the other hand, in such samples, in a carefully arranged experiment, it
is possible to constraint the number of coupled modes to only a few, well sepa-
rated in energy, ones. If their coupling coefficients are precisely evaluated, one can
expect quantitative agreement between the model and the experimental data [17]
(e.g. proper values of the Suhl threshold or autooscillation frequencies). The main
part of this paper is thus devoted to the analytic derivation of the expressions for
these coefficients in some special situations, with the influence of the sample shape
taken into consideration.

2. Nonlinear interactions of dipole-exchange and magnetostatic modes
in ferromagnetic resonance

2.1. General theory

Existing formulae for the coefficients, describing three- and four-mode inter-
actions in the case, when the boundary conditions are important [4, 17, 22-30], 
are not complete and precise enough (see discussion in Sec. 4.), so they are derived
in a compact form below. First, a general theory for the sample of arbitrary shape
will be considered, and then, the obtained results will be applied to a special case
of a thin plate, magnetized parallel or perpendicularly to its surface. The consid-
erations, presented below, are partially based upon the work of Benner and Wiese
[4] (who have found three-mode coupling coefficients among the magnetostatic
modes in a sphere, using the Landau-Lifshitz equation to describe the motion of
the magnetization [1]), but they are performed within the semiclassical Hamilto-
nian formalism [5-7, 17], and extended to include the four-mode interactions apart
from the three-mode ones. The Hamiltonian approach has the advantage of giving
the equations of motion in their canonical form, and formulae, obtained for the
coefficients of four-mode interactions are more precise than in the method, start-
ing from the Landau-Lifshitz equation [2]. The Hamiltonian of the system has the
form
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Here .M is the magnetization, Hout is the external field, consisting of the cf part
H0 and the rf part h(t), M0 is the saturation magnetization, D = 2JSα 2 /hγ is
the exchange constant, γ is the gyromagnetic ratio, and  Hd[M(r,t)] denotes the
dipolar field of the magnetization in brackets. All the magnetizations and fields
are normalized to M0. The first term in the Hamiltonian is the interaction energy
with the external field, the second one is the dipolar self-energy and the third
one — the exchange energy. Anisotropy effects are not included. In the following,
the coordinate system will always have the z-axis parallel to the direction of the
external cf field H0.

A classical version of the Holstein-Primakoff transformation is now used to
write the Hamiltonian in terms of the canonical variables α, α*

Here M+ = Mx + iMy , , M- = M+* and Mz form a complex representation of the
real magnetization M, and the star denotes the complex conjugate.

At that point, the variables a, a* are usually expanded in the Fourier series.
In the following, however, the expansion in terms of dipole-exchange or magne-
tostatic modes will be performed [4, 17, 30], because they are already fit for the
sample shape. These modes form a complete set of solutions to the system of
partial differential equations, consisting of the Maxwell equations in the magne-
tostatic approximation (electromagnetic propagation effects neglected) and the
Landau-Lifshitz equation in the linear approximation. If the exchange field is ne-
glected, the solutions are called magnetostatic modes [31]; otherwise, they are
called dipole-exchange modes [32]. Henceforth it will be assumed that the magne-
tization m of any dipole-exchange mode at the sample surface fulfills the pinning
boundary conditions [33]

Here 0 < a, b < 1 are real constants and ∂/∂n denotes the normal derivative.
After introducing the magnetostatic potential  [31], such that hd = , where
hd is the rf part of the dipolar field, such exchange boundary conditions, together
with the common magnetostatic boundary conditions, lead to the characteristic
equation, which determines the frequencies of the allowed, in general, complex,
solutions  (mode potentials). Henceforth mk and Hd[mk] = k denote the
mode magnetization and dipolar field, respectively, and k is the mode index. It
may be proved that two modes with distinct frequencies, and obeying (3), fulfill
the following orthogonality relations [31, 34]
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Here V is the sample volume, f dV denotes the integration over V, δkl is the
Kronecker delta, and m+k =mkx, imky = mkx-imky,as usually. Let us
note that Eq. (5) determines the normalization for the modes.

The expansion of a, a* in terms of the dipole-exchange modes is

After inserting Eqs. (6), (2) into (1) (we emphasize that contributions to the
dipolar field from both the linear and nonlinear parts of the expression for the
magnetization (2) should be retained) and taking into account that for any two
magnetizations m l , m2 [4]

the Hamiltonian takes on the form of a power series with respect to a k, ak*, plus
the term, describing the interaction of the magnetization with the pumping field

Ήp consists of terms involving the external rf field,Ή2 consists of quadratic terms
in αk, ak*; Ή3 of cubic terms and Ή4 — of quartic terms. Higher-order terms need
not be included.

In the following, we shall constraint the discussion to the case of the uniform
in space rf pumping field. In the case of perpendicular pumping, one can assume
the time dependence of the rf field in the form of h(t) = hT ey cos cot, and in the
case of parallel pumping h(t) = hTey  cos ωt, where the amplitudes ħT, hz are real.

Ήp, the pumping term, is then [17]

in the case of perpendicular pumping and [4, 34]

in the case of parallel pumping. Ik and Jkl are the coupling coefficients for the
interaction between the pumping field and the directly excited modes. In parallel
pumping the rf field directly excites pairs of modes with the frequency ω/2. If
the pumping field is strong enough, their amplitudes can grow exponentially in
time — this is the parallel pumping instability [2]. In the case of perpendicular
pumping usually only one mode, e.g.- the uniform one, is strongly excited. When
the rf transverse field power exceeds some threshold value (Suhl threshold), the
directly pumped mode can decay into two another modes with the frequencies
ω1 + ω2 = ω (the 1st order Suhl instability) [1]. If this process is forbidden by
the energy conservation, i.e. the energy gap below the mode spectrum is larger
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than ω/2, two quanta of this mode can decay into two modes with the frequencies
ω1+ω2 = 2ω (the 2nd order Suhl instability) [1]. The former process is described

by the three-mode interactions, contained in Ή3, and the later — by the four-mode
interactions in Ή4. This part of the Hamiltonian takes also into account another
four-mode interactions, e.g. the coupling among the modes, created in the Suhl
instabilities [6]. In the following, like in the S-theory in the spin-wave approxima-
tion [7], only the terms in Ή4 with two creation and two annihilation "operators"
(αk*, ak, respectively) will be retained.

The remaining part of the Hamiltonian is

In the above expression the sequence of subscripts i, j, k,l is a permutation of the
set k1, k2, k3, k4 of the mode indices and Mi = mi if i = k1 , k2 or Mi = i*m if
i = k3, k4.
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U, V, T are the three- and four-mode coupling coefficients we have been looking for
(Eq. (16) was also derived in [4]). The long expressions, presented above, may be
slightly simplified, because e.g. four coefficients Tk1k2k3k4, Tk2 k1 k3 k4, Tk1 k2 k4 k3)
Tk 2 k1 k4 k3 appear with identical combinations of 4 1 , αk*2, αk3, αk4, only variously
ordered. One can then join similar terms together and divide them among four
new coefficients to make the notation shorter, but the number of distinct integrals
over the sample volume, which must be performed, will not be diminished. In the
present notation, the four above-mentioned coupling coefficients are equal to each
other and Tk1k 2 k3k4 = Tk4 k 3 k 2 k1' as expected. Let us note also that the obtained
formulae for all coefficients remain valid in the spin-wave approximation. In order
to obtain their explicit form in that case, the expansion (6) must be replaced with
the Fourier expnsion of α, α*, and — before inserting it into the Hamiltonian —
the Bogoliubov transformation must be performed.

It is easily seen from Eqs. (16-18, 20)that these expressions may be calcu-
lated, if the mode magnetizations are known: In fact, the task is only to evaluate
three-dimensional integrals over the sample volume, what at worst may be per-
formed numerically. A more difficult problem is to evaluate the dipolar fields of the
scalar products of the mode magnetizations in Eq. (19). The result usually cannot
be obtained analytically and it is the main constraint for the applications of the
given formulae to real samples, e.g. spheres. In the case of thin slabs, however, the
exact functional form of this dipolar field may be given, owing to the simplicity of
the magnetostatic potential for both dipole-exchange and magnetostatic modes in
a thin plate. Then, the Suhl thresholds for any of the three above-mentioned in-
stabilities may be calculated as from the spin-wave approximation [1,2,6-7], but,
hopefully, with more accuracy.

2.2. Application o the magneostatic modes in a thin slab

In ths paragraph, the general results, obtained in the preceding section, will
be applied to the special case of a thin ferromagnetic slab, infinite in two dimen-
sions, magnetized parallel or perpendicularly to its surface. Only magnetostatic
modes will be considered, because of the relative simplicity of the calculations in
comparison with the case of the dipole-exchange modes. One can always arrange
the experiment in such a way that only the modes from the lowest surfaces of
the energy spectum are involved in the Suhl instabilities, for example in very
thin films, where the exchange interaction shifts the higher-order surfaces consid
erably upwards [32]. The exchange affects not only the frequencies of the modes,
but the magnetostatic potential, too [32]. This can influence the exact numerical
results, even if the coupled modes have relatively small wave numbers, and their
frequencies are essentially unmodified by the exchange forces. But if one is able
to obtain the potential and frequencies of the dipole-exchange modes, calculation
similar to that below may be performed, because such a potential differs from the
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magnetostatic mode potential rather not in its functional form, but in the number
of constants, determined from the boundary conditions [32].

In the case of a thin slab, magnetized parallel to its surface, the coordinate
system has the x-axis perpendicular to the sample surface, the z-axis parallel to
the surface, along the direction of the external cf field. The magnetostatic modes
may be indexed with the numbers kx , qy, qz, which are the wave numbers in the
x, y, z direction. The potential of the mode inside the slab is 135]

If kx is real, this is the volume mode potential, and if kx is purely imaginary —
the surface mode potential. A, B are constants, determined from the boundary
conditions and the normalization (5). From Eq. (21) a vector function m(x) may
be obtained, such that the mode magnetization is m(r) m(x) exp[i(q yy qz z)].

The dipolar field of the scalar product of the magnetizations of two modes,
say, 1 and 2, appearing in Eq. (19), may be calculated with the help of the mag-
netostatic Green function for the slab [25]. If we denote q1 , 2 = qy1,2ey qz1,2ez
and f12(x) is such a function that mi(r) • m*2(r) = f12(x)exp[i(q 1-q2)p] (pis
the part of r in the plane of the slab), then the respective dipolar field in Eq. (19)
is zero if q1 = q2 and elsewhere

Here δ denotes the Dirac delta function; 1, ...4 are abbreviations for k1,...k4, and,
because the slab is infinite in two dimensions, the volume of the sample V was
replaced, also in the normalization (5), by (2π) 2 S. The integral in (24) may be also
evaluated analytically. The remaining inputs to Tkikak3k4 may be calculated in a
similar way, and the remaining contributions to the four-mode coupling coefficient
— easily evaluated from Eqs. (21) and (18). In our case (exchange effects neglected)
the exchange part of this coefficient is, of course, unimportant.

In the case of a perpendicularly magnetized slab, we proceed in the same
way. The coordinate system has its z-axis perpendicular to the sample surface,
and x, y axes — in the plane of the surface. The magnetostatic potential is [36]
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Jn is the Bessel function of integer order n, 	 = 0 or 1 for modes even or odd in z.
The modes are indexed by n, k i,, kz . Expanding 1/|r - r'| in the cylindrical system
of coordinates, it is possible to obtain in the first approximation Hd z [mz (r)ez ] =

4πmz(r) [17], in analogy with Eq. (27), but exact calculation of the dipolar fields
in Eq. (19) is rather impossible. Thus only "selection ules" for the angular part
of the mode potentials are given. The three-mode coupling coefficients (16) are
non-zero only if

n2 + n3 = n1 	 (29)
and the four-mode coupling coefficients (18, 19) are non-zero if

n1 + n2 = n3 + n4. 	 (30)
Equations (29, 30) are equivalent to the angular momentum conservation, as the
Dirac delta function in Eq. (24) means the momentum conservation. Analogous
"selection rules" are valid for the magnetostatic potential of the sphere (cf. [4, 30]).

3. Suhl instability thresholds

The expressions, derived in the previous paragraph, enable us to do the direct
calculation of the nonlinear coupling coefficients among the magnetostatic modes
in a thin slab. As already mentioned, the Suhl thresholds for any of the three types
of instabilities may be then evaluated. This procedure has been widely described
by many authors [1, 2, 6, 7], so only the results will be given here. It is assumed
that in the parallel pumping instability only one pair of modes (we denote them as
k, -k, in analogy with the spin-wave theory, to indicate that some selection rules,
must be fulfilled) with frequencies ωk ≈ω/2, detuning Δω k ≈ ω/2 - ωk 0, and
phenomenological damping hk is directly excited by the rf pumping field above the
Suhl threshold. Then the critical value of the rf field amplitude for the occurrence
of the instability is
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where Jk =Jk,-k+J-k,k  in Eq. (12), δk = k+iΔωk. In the case of both types
of the perpendicular pumping instabilities it is assumed that only one mode (we
denote it as the zero one) is directly coupled to the rf field with the coupling
coefficient 10 from (10), detuning Δω0 and damping h0 . In a finite plate it need
not be the uniform mode; in fact, many absorption peaks at different frequencies
can be seen in the resonance spectrum. This mode then decays into one pair of
modes k, — k with the detuning Δωk = ω/2 — ωk or Δωk = ω - ωk for the 1st
or 2nd order Suhl instability, respectively. Then the critical values of the rf field
amplitude are: for the 1st order instability

where T = 2 (Tk, — k,0,0 + T— k ,k,0,0) from Eqs. (18-20). In the latter case, however, it
is necessary to consider the influence of the virtual three-mode processes (forbidden
by the energy conservation) on the four-mode ones [5, 7] and also other four-mode
processes, which are not directly responsible for the occurrence of the instability,
so Eq. (33) is only approximate.

Three remarks are necessary. First, the assumption that only one pair of ad-
ditional modes is excited at the threshold is of no physical importance, because the
instability occurs when the pair (or infinitely many pairs, (cf. [8])) with the lowest
threshold becomes excited, and this value of the rf field amplitude is measured as
the critical one. Second, it is possible to consider the non-degenerate excitation
of mode pairs with even great detunings [14, 34], and in thin plates there exist
an experimental evidence that the threshold power for this process may be less
than for the decay of the pumped mode into a pair of degenerate modes with
half the pumping frequency [14]. Third, small non-zero detunings of the excited
modes, even if their frequencies might be degenerate, may be connected with the
discreteness of the mode spectum in a finite sample and sometimes have great
influence on the behavior of the system far above the Suhl instability.

4. Conclusions

Although many papers have already been devoted to the question of the
Suhl instabilities in thin slabs (Sec. 1.), this is, as far as we know, the first paper
in which the 2nd order Suhl instability apart from two remaining ones has been
discussed in terms of magnetostatic and dipole-exchange modes, with the exchange
energy included in the Hamiltonian. Besides, the results of Sec. 2.1. are much more
general and may serve as a tool for the investigation of the nonlinear ferromagnetic
resonance in samples of various shapes and with different kinds of the pinning
exchange boundary conditions (3). Other authors have investigated theoretically
mainly the 1st order instability (the exceptions are [23, 24]) in thin slabs [22-29],
probably because of its importance in many electronic devices [29]. The 1st order
and parallel pumping instability of the Walker magnetostatic modes in a sphere
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[31] was discussed in [4, 30] and in a thin, axially magnetized cylinder in [34]. But
very interesting results, especially in the study of auto-oscillations and chaos, were
obtained in the main resonance (2nd order) instability configuration [15, 17].

The literature, known to us, does not provide any examples of exact mea-
surements of the Suhl thresholds, when distinct magnetostatic modes are excited
by uniform pumping in a thin plate. Preliminary results of our numerical investiga-
tion of the thresholds for the 1st order instability in the slab, magnetized parallel
to the surface, show, however, that the parametric excitation of various types of
volume dipole-exchange modes is possible via the decay of the volume or surface
magnetostatic modes. If the pumped mode is conveniently chosen, it can decay
not only into non-degenerate mode pairs, belonging to different surfaces in the
energy spectrum, as in Ref. [14], but also into degenerate mode pairs with half
the pumping frequency, belonging to the same energy surface. If only this latter
case is considered, the threshold for the instability of modes with higher frequency
(in general, surface modes) turns out to be higher than for these with lower fre-
quency (in general, volume modes), what is in qualitative agreement with the
experiment [21]. We are going to contain the results of our current investigation of
both time-independent and time-dependent nonlinear effects in thin slabs above
the Suhl threshold in a separate publication.
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