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Phenomenological and microscopic models to treat modulated crystal
structures are reviewed. Their applicability to interpret the specific phase
diagram of betaine-calciumchloride-dihydrate (BCCD), which is of the "in-
complete devils,s staircase" type, is critically discussed. Some experimental
observations, which emphasize the fractal topology of the BCCD phase di-
agram, have been compiled. They support the preference of microscopic
approaches as the ANNNI-model over the classic Landau theory for this
specific case.
PACS numbers: 64.60.-i, 64.70.Rh, 77.80.Bh

1. Introduction

Incommensurate crystal structures have attracted considerable activities in
solid state science because these systems can be regarded physically as an interme-
diate between the crystalline and non-crystalline state. In general, incommensu-
rate (ic) phases are encountered before the crystal transforms from a'paraelectric
(disordered) state (n) to an ordered (ferroelectric (fe) or ferroelastic) phase at
low temperatures or they are intercalated between commensurately (c) modulated
phases of varying modulation wave vectors. The essential feature of a crystal in
the ic state is the modulation of the crystal stucture with a wavelength of the or-
der parameter, which is irrational to the existing lattice period and which changes
continuously with an external parameter, e.g. temperature T or pressure p. In the
c phases the modulation locks in at a rational multiple p of the lattice period
with a p-fold increase in the unit cell. A sequence of several lock-in phases may be
encountered before the system finally enters-the low temperature phase. In the ic
phase the system has no translational symmetry but it has, of course, long-range
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order. Its X-ray diffraction patterns show sharp spots that have to be labelled by
more than three Miller indices.

Sequences of differently modulated c phases interupted by ic phases have
been studied theoretically in detail by various methods [1], they are called an "in-
complete devil's staircase". This peculiar type of behaviour is well represented by
BCCD (betaine-calciumchloride-dihydrate, (CH3)3NCH2COO.CaCl2•2H20;
D162h(Pnma), Z = 4 at T = 300 K). BCCD is an addition compound of the
α-amino acid betaine and the inorganic component. Many features of its unusual
properties have been investigated in the last few years [2]. At TI = 164 K the
ic state is encountered (second-order transition) with the one-dimensional modu-
lation q = δ(T)c*, δ(164 K) = 0.32. With lowering T, δdecreases continuously.
Prominent c phases with δ=m/p = qi/│c*│(m,p-integer,qi— wave vector
of one-dimensional modulation along c*) are d = 2/7 (127.8 > T > 124.5 K), 1/4
(115.3 > T 9 75.8 K), 2/9, 1/5, 2/11, 1/6, 2/13, 1/7, 1/8, 0/1 (fe) at T < 46.0 K
(Pfe|| b) [2, 3]. Details, more c phases at ambient pressure, and the ic phases sand-
wiching the c phases in the interval (164 K > T > 115.3 K) can be found in
[3].

In the following we review shortly the theoretical procedures used to describe
devils,s staircase systems: the phenomenological Landau approach, and the micro-
scopic treatments based on statistical theories of Ising-type pseudospins. The pro-
totype of the latter methods is the ANNNI-model (axial next-nearest neighbour
Ising, [1]). In the next section experimental results will be compiled, mainly from
spectroscopic and dielectric work done at Würzburg,, which support the conclu-
sion reached that much of the physics occurring in BCCD is in surprisingly good
agreement with the predictions of this microscopic approach.

2. The Landau theory of c and ic phases

Many authors have contributed to a rather complete understanding of the
normal incommensurate (n—>ic) type of transition into the ic state and, at lower
temperatures, into the lock-in (c) phase in the frame of the classical Landau ap-
proach [4, 5]. Ford along z, the order parameter Q is complex: {Q(k), Q*(-k)},
Q = PeiФ(z),Q is spatially varying. Expanding the thermodynamic potential f(z)
in terms of Q, Q* delivers the term A(T)QQ* and higher powers of Q, Q*, but
also the Lifshitz invariant Q(∂Q*/∂z)-Q*(∂Q/∂z) and higher order invariants of
Q,,∂Q/∂z,(∂2Q/∂z2)and others. The symmetry of the high temperature phase
determines which of these invariants enter f(z). Near TI, the plane-wave approxi-
mation is generally valid: Φ = const • z, dP/dz = 0 (sinusoidal modulation). While
in most ic materials the modulation squares with decreasing T, as in thiourea, i.e.
higher harmonics of the modulation grow and higher order satellites are observed
in X-ray diffraction, surprisingly no such squaring is found in BCCD [6].

A free-energy density f(z), verifying all symmetry constraints of BCCD, has
been used by Ribeiro et al. [7] to take the transition at T1 and the most prominent
lock-in transitions into account
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α = α0(k)(T - T0 ); α0 , β, γ, σ > 0. The averaged free-energy density F is
F = L -1 ∫L0 f(z)dz. L is the pitch of the modulation. The coefficients σ and
γ are chosen in order to describe the occurrence of modulated stuctures, 'since
the terms associated with these coefficients are responsible for a minimum in the
dispersion curve α0(k) at an arbitrary point q of the Brillouin zone, q = δ c*. The
dispersive term vP 2 (Pz) 2 imposes a temperature dependence of qi [7]. For taking
the various lock-in phases into account, the existence of additional "umklapp"
terms (α P2p, δ= m/p)in the free-energy densityf(z)is required. To avoid the
uncomfortably high powers of P involved (p < 23, see Sec. 4) -; an adjustable

β

eff
was introduced ad hoc in (1) [7]. With this phenomenological model, the main
features of the complex behaviour of BCCD at ambient pressure can be taken into
account.

The coefficients α, β, o, etc. can be determined either by adjustment to
experimental data, as in [7], or by derivation from a microscopic model of the
anharmonic single-particle and the twoparticle interaction potential up to the
fourth order [8, 9]. The latter procedure, which is conceptually more satisfying, may
result in a Landau expansion of f(z) up to high orders of umklapp terms, where
the coefficients are derived in a unique manner from the few parameters of the
microscopic model. This model has not yet been applied to BCCD. Problems may
arise, because this treatment requires the presence of secondary order parameters
(higher harmonics of the modulation) for the location of the c phases.

There has been an intense but speculative search for another (second) order
parameter in BCCD which is not responsible for the modulation but for a possible
small monoclinic distortion, starting with the theoretical work of Dvořàk [10] and
the detection of a slight rotation of the indicatrix below TI [11]. A careful evaluation
of all available experimental data [12], however, favours a model with only one
order parameter at least in the temperature region above 70 K.

3. Predictions of the ANNNI model for BCCD

The ANNNI-model [1] considers a primitive tetragonal lattice of Ising pseu-
dospins oriented along the tetragonal (z-) axis, the axis of modulation. In the
planes 1 z the spins Sid and Si,j±1 are fe coupled to their nearest neighbour.
with an interaction energy Jo. Nearest neighbours (NN; i , i ± 1) along z are either
fe coupled (J1 > 0) or antiferroelectrically (afe) (J1 < 0), while next-nearest
neighbours (NNN; i, i± 2) along z are assumed to be afe coupled (J2 < 0). The
Hamiltonian of this model may be written as

The parameter к = J2/J1 is introduced, к ≠ 0, the sign of к depends on the sign
of J1. For both signs of i frustrated interactions (fe versus afe) will occur and give
rise to modulated structures [13]. The model is controlled by only two adjustable
parameters kBT/J0, к

A part of the mean-field phase diagram of the ANNNI-model in Fig. 1 shows
the paraelectric (p), fe phase and the c phase (δ = 1/4), enclosing the region of
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more complicated c and ic modulated phases. The c phases display shapes like
leaves of the devil's flower with the tips ending at 71. Due to entropic effects not
considered here, successive c phases of high order will be replaced by ic phases
with δ varying continuously. A Lifshitz (multicritical) point occurs near K = 0.25.
We refer to the fact that the line, which separates the p phase from the modulated
phases ("TI-line", near kBT/J0 = 5.5), depends only weakly on K, while the phase
boundaries between the various c phases are strongly governed by K. In linearized
mean-field theory, the critical wave vector qi and the TI-line can be calculated in
closed form [14].

For the other phase boundaries (between the c phases) expressions in closed form
are not available.

Detailed theoretical studies of the ANNNI-model have revealed the existence
of structure combination branching processes (bifurcations) and accumulations of
these processes in certain well-defined regions of the c phases [1, 13, 14]. In a
stucture branching process between two c phases with δ 1 = i/j and δ2 = k/l a new
c phase develops with a modulation vector δb = (i+ k)/(j + l). With T and (or) K
changing, these branching processes will proceed to δb,n = (1+-nk)/(j+nl),n E N0.
As the stability of phases (i.e their width in Fig. 1) with complicated modulation
patterns decreases, the density of c phases with increasing complexity will grow
towards an "accumulation point" (AP, n→ ∞) in the (K, T)-phase diagram. These
structure branching processes and their accumulations appear as characteristics
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for modulated phases which follow the ANNNI-model. This model gives detailed
predictions for the occurrence of these "fractal structures" in the phase diagram.
Results of other, more elaborate microscopic models on these effects are not yet
available [15, 16]. These models also start from an ansatz for the anharmonic
molecular potentials similar to the potentials used for the Landau approach. Thus
both methods obviously share a common basis. The Landau approach, however,
has not yet been analysed for its potential to take the fractal properties of the
phase diagram of BCCD and their consequences into account.

4. Experimental results on BCCD

In this chapter a selection of experimental results is given, which emphasize
the fractal character of the phase diagram of BCCD. An important experimental

parameter besides temperature is the application of external pressure, both hydro-
static and uniaxial, because the interaction parameters (Ji of the ANNNI-model
or of the anharmonic potentials) can be varied by the pressure dependence of the
interatomic distances in a quasi-controlled manner. We have performed detailed
studies of the temperature and pressure dependence of the dielectric constant
ε(p,T) in the ranges of 20 K < T < 300 K and 0.1 < p < 550 MPa. The ex-
trema of ε mark the phase boundaries at the transition temperatures Tt . The
(p, T)-phase diagram of BCCD thus obtained is presented in Fig. 2 [17]. With in-

creasing pressure all ic and c phases are stabilized, (dTt/dp) > 0, the interval ΔT
of stability is near TI generally decreasing. A Lifshitz point L can be extrapolated
near TL = 346 K, pL = 1.16 GPa. Structure branching patterns (bifurcations) can
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be observed near 150 K and 250 MPa around the δ = 2/9-phase, near 180 K,
380 MPa (δ = 2/11) and (unresolved) near 200 K, 500 MPa (2/13). The plethora
of c and ic phases near δ = 2/7 can be interpreted as the aftermath of a branching
occurring at negative pressures and close to 100 K. Fractal properties of the phase
diagram (self-similarity) are clearly discernible [17] within the branching regions,
where narrow c phases are in general sandwiched by reentrant ic phases, which will
dominate the diagram with T and p finally approaching L. An experimental proof
for the existence of these reentrant ic phases, which are not observed at ambient
pressure, is found in Fig. 3. Here the pressure dependent wave number shift of a
transmission maximum of BCCD in the FIR spectral region at 175 K is plotted.
The branching regions at δ = 2/9 and 2/11 are both crossed. Within the c phases
the phonon frequencies are constant but vary continuously through the ic regions,
depicting the dispersion of an acoustic phonon branch scanned by the δ-dependent
zone boundary due to the folding of the Brillouin zone [18].

Negative pressure, i.e. an expansion of the unit cell, can be realized by sub-
stituting ions with larger ionic radii on regular lattice sites ("chemical pressure").
This has been achieved in BCCD by introducing a small percentage of Br — on

Cl-sites and the opposite behaviour by a Mn2+ Ca2+ substitution. With
Br-doping, all Ttshift to lower temperatures, an averaged chemical pressure of

10.1 MPa/(% Br- ) has been observed [19]. In addition the local lattice strain at
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the Br— sites causes pinning of the modulation with increasing hysteresis effects
as a consequence, (the c→ c transitions are of the first order). With growing con-
centration more and more phases with long-period modulation are suppressed and
a glass-like freezing of a relaxatory dipolar motion is found. Remember that the
prerequisite of the glassy state are the frustrated interactions, clearly effective in
BCCD.

If we follow the size of the dielectric anomalies along a phase boundary, say
δ = 2/9 1/4 or ic, we observe first a strong increase of ε with growing p, then a
broad maximum is found, generally occurring in the branching region, and finally
a gradual decrease will be registered until the anomaly disappears (Fig. 4), [20].
We have attributed these maxima of ε and, consequently, of the Curie constant to

the occurrence of an AP of branching processes. ε near the AP is enhanced up to a
factor of 250 over the size of the anomaly measured outside the branching region.
Although the high order c phases near an AP do not exist as stable phases, they
contribute to the fluctuations of the order parameter. The extrema of ε thus locate
the positions of the AP in the (p, T)-phase diagram. In Table I we have compiled
the observed AP, they compare surprisingly well with the position expected by the
ANNNI-model [13, 14]: TANNNIAP ≈159 K.

Experiments applying uniaxial pressure should indicate, why BCCD so closely
follows the predictions of a simple model as the ANNNI-model is. Under such
experimental conditions the intermolecular interactions causing the modulation •
will be varied in an easily controlled manner and the results can be compared
with the effects due to a uniaxial deformation of the pseudospin lattice of the
ANNNI-model, assuming a growing interaction strength with reduced spin dis-
tances. Uniaxial pressure F was applied along the x- , y- , z-axis of orthorhombic
BCCD, while the phase transition temperatures were determined by observing the
dielectric anomalies (ε y ) in the y-direction. In Table II the slopes

(∂Tt/∂Px│p=0etc.) have been compiled and compared with the results of hydrostatic pressure.
Obviously the crystal behaves considerably different under uniaxial or hydrostatic



458 	 G. Schaack

pressure: Only small effects are observed for F x or y with either positive or
negative slopes ∂Tt /∂px,y. At F || z (the direction of the modulation in BCCD)
the lock-in phases shift linearly and roughly with the same slopes as under hy-
drostatic pressure. The transition at TI, however, displays only small shifts, irre-
spective of the direction of F, and different from the behaviour under hydrostatic
pressure. For the ease of interpretation the results have been transformed from
the stress dependencies of the transition temperatures to their strain dependen-
cies: ∂Tt/ ∂9px,y,z=∂Tt/∂σ1,2,3→∂Tt/∂ε1,2,3, using the known elastic constants
(stiffnesses) cij of BCCD (in Voigt notation). This procedure eliminates the ef-
fects of lateral strains on the transition temperatures and provides results, which
are directly comparable with the uniaxial deformation of the pseudospin lattice
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(Fig. 1), and which indicate that the transition (n —> ic) at TI depends strongest on
a lattice deformation along the x-direction. Next in importance is the y-direction,
while a deformation along z is of minor relevance. The transitions into the lock-in
phases δ = 2/7 andδ  = 4/15 display the opposite hierarchy of deformations. Here
the strain along the axis (z) of the modulation is most important, while εi has
the least effect. This trend becomes even more pronounced for c phases at lower
temperatures.

These results are in full agreement with the predictions of the ANNNI-model,
as is evident from Fig. 1 and Eq. (3): The Ti-line in the figure uns almost horizon-
tally at kBT/J0 ≈5.5 and depends only marginally on к  =J2/J1. An increase
in the inplane coupling constant J0, as caused by a uniaxial compression of the
crystal along the x- or y-directions, will shift TI to higher temperatures more ef-
fectively than an increase in due to a deformation along z. The opposite is true
for the (c↔c)-transitions, as is again evident from Fig. 1. Here the phase bound-
aries between c-phases (near the Lifshitz point) are oriented almost parallel to the
kBT/ J0-axis, i.e. they are strongly dependent on к, but almost unaffected by the
size of J0. Thus the largest effect on-the c-phases is expected from a strain ε3 along
the modulation axis, as is indeed observed in BCCD.

The question raised, why BCCD obeys the predictions of the ANNNI-model
so well, can be answered now in parts as follows: Although the pseudospins of the
ANNNI-model cannot be located at present in the BCCD lattice nor attributed to
specific molecular units in this material, the scheme of intermolecular interactions
effective in this crystal is closely correlated to the assumptions underlying the
ANNNI-model (J0, JI, J2 , J1/J2 occurring with both signs).

5. Conclusions

BCCD is one out of a few materials where both the phenomenological and a
microscopic theory have been elaborated to interpret the phase sequence [7, 13, 16].
Both procedures have their merits and their drawbacks: The Landau approach is
an expansion of the free energy in terms of the order parameter at the n—>ic phase
transition with invariants adapted to n-phase symmetry. Competing interactions
are taken into account by the opposite signs of the order-parameter derivatives in
(1): {(σ/2)(∂P/∂z) 2 < 0, (γ/4)(∂2 P/∂z 2 ) 2 > 0}, see [7]. It can be expected that
the n→ic transition and the subsequent transition into the first c phase are well
represented by this method (transition from the plane-wave region to the discom-
mensuration (soliton) regime [4] close to the first ic—>c transition, where nearly
commensurate domains in the crystal are separated by domain walls (discom-
mensurations, solitons), where all the incommensurability is localized). Additional
c→c transitions, however, and especially (c—> intermittend ic)-phases are difficult
to model and require an unreasonable large number of adjustable parameters,
which cannot be based on physical argumentation, or a reliable model of single
particle and intermolecular potentials. It provides however standard methods for
calculating thermodynamic potentials, variables and all kinds of susceptibilities.

The discrete spin models, i.e. the ANNNI-model and its derivatives, on the
other hand, have as ground states well ordered ferroelectric (δ = 0/1) or modulated
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phases (e.g. δ = 1/4 and many others, perhaps degenerate). Most investigations
have to rely on a time consuming numerical analysis, analytical results are scarce.
Opposite to the Landau approach, the behaviour at higher temperatures has to
be derived from the fully squared groundstates, in most cases in a mean-field
approximation (MFA), where the spins in a plane j ┴ z have an average value

	

< 1. For high temperatures the n-phase 	 = 0) is the only solution. At
decreasing temperatures an instability occurs for к  > 1/4 at a wave vector given by
(2). Below that transition many narrow c phases with distinct δ-values (δ = m/p)
with large p, p +1, .. are encountered (Fig. 1), which sometimes are difficult to
distinguish from an ic phase with δ. varying continuously. The ANNNI-model has
been used recently by Siems and Tentup [13] to interpret the observed sequence of
modulated phases in BCCD and the branching points by adjusting the interaction
parameters of the model. Their result is presented in Fig. 5. To correlate the
(p-T)-values of Fig. 2 with the ANNNI-interaction constants J0, 	 /J2 =
of Fig. 5, the fact was used that the δ = 1/6-phase is centred around K -1 = 2
(Fig. 2). The other c-phases are shifted parallel until their (extrapolated) tips

intersect the TI-line at q-values determined experimentally in [17]. The region of
negative pressure is extrapolated to the positions of the various phases predicted by
the ANNNI-model (Fig. 2). The experimental phase diagram agrees nicely with the
properly adjusted ANNNI-diagram. There are, however, quantitative differences,
which might be due to a MFA overestimate of the stability of c-phases and the
fact demonstrated in Tab. II that pressure affects 4 with different strength.

Whenever the "incomplete devil's staircase", i.e. the fractal topology of the
phase diagram is considered, a microscopic spin model analysis has to be preferred
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over the phenomenological treatment. This becomes more evident when we study
the mapping of the spin averages sj, j labelling subsequent basal planes of the
pseudospin lattice (Fig. 1) 11, 131

by a symplectic matrix H , derived from (2) in MFA [13]. If sj-2...,sj+1 are
known, -sj+2 can be calculated. A c-phase corresponds to a polarization profile

{sj-2,...sj_2} which repeats itself after a finite number of steps. One then ob-
tains a discrete mapping permitting iterated fixed point expansions that can be
interpreted as a spαtiαl analogue with к as a control parameter to the evolution
of a discrete nonlinear dynamical system in the time domain [16]. Several results
of this tremendously developing field can then be used, especially the branching
(bifurcation) route and the route to deterministic chaos towards an accumulation
point [22].

The simple spin models suffer from a serious drawback: Methods and models
for constructing equilibrium equations, free-energy functionals and for calculating
susceptibilities, which are standard in the Landau approach and can be obtained
in closed form, are difficult to develop or are not yet available but are urgently
needed. More advanced models, combining important advantages of both methods,
have been sketched recently [15, 16], but are not yet analysed as completely as
the simple ANNNI-model. Future work in these directions should improve this
situation.
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