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CENTRIFUGAL DISTORTION EFFECT
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An attempt at including the centrifugal distortion effect in description
of the rovibrational states of diatomic systems with a molecular potential
approximated by the Morse function is presented. The derived Schrödinger
equation can be rigorously solved leading to the eigenvalues in the form of
a continued fraction, which are applied for evaluation of the molecular con-
stants and for prediction of the rovibrational spectra of the selected diatomic
molecules giving quite satisfactory reproduction of the experimental data. A
simple extension of the method developed, by assuming the rotational de-
pendence of the dissociation constant, is also proposed.
PACS numbers: 33.10.Cs, 33.10.Jz

1. Introduction

The well resolved IR and MW spectra, as well as the structural simplicity of
diatomic systems are the reasons why they have become convenient test objects
for the new spectroscopic theories and molecular models.

Recently, on the basis of the deformable body model [1] and harmonic [2-5] or
Simons-Parr-Finlan [6-10] potential approximation, a few different approaches to
theoretical reproduction of the rovibrational spectra and calculation of molecular
parameters have been proposed. A common feature of these methods is that they
take into account the deformational influence of the centrifugal force acting in the
rovibrational systems, and lead to the exact analytic formulae for the rovibrational
energy and the corresponding wave functions.

In this paper we propose to extend the research area onto the diatomic
molecules described by the Morse potential [11]:

U(r) = D0{1 - exp[-a(r — ro)/ro]}2, 	 (1)
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in which r and r0 denote the internuclear separation and equilibrium distance,
respectively, whereas D0 represents the depth of the potential well and α is the
range parameter. The Morse potential has a few remarkable properties, making it
useful for approximating the real potential curves of diatomic systems. Namely:

(i) It takes into account the anharmonicity of vibrational motions.
(ii) It includes the ability of the molecules to undergo dissociation at high exci-

tation energies.
(iii) Its behaviour over the whole range of internuclear distance is qualitatively

correct (including asymptotic condition U( ∞) = D0).
(iv) It preserves the quasi-harmonic properties in the vicinity of the potential

minimum.
(v) The rovibrational Schrödinger equation with potential (1) can be rigorously

solved [12].
In view of the above the aim of this paper is to employ the deformable

body model [1, 2] in description of rovibrational states of diatomic systems with
a molecular potential approximated by the Morse function (1). The presented
approach leads to the Schrödinger equation, providing analytic wave functions
and eigenvalues given in the form of a continued fraction, which will be applied for
evaluation of molecular constants and for prediction of rovibrational spectra of the
selected diatomic molecules. We shall also be concerned with a modification of the
obtained formula by taking advantage of the expansion of dissociation constant
into a continued fraction of rotational quantum number.

2. Method and applications

The rovibrational Schrodinger equation for diatomic systems endowed with
reduced mass m, and including the Morse function (1) has the form

Expanding the reciprocal moment of inertia in series of the curvilinear coordinate
z = exp [-a(r - r0)/r0] [12], in the vicinity of the equilibrium configuration r0, we
get

whereas the original equation (2) for parabolic expansion takes the form
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Taking into account a quantum-mechanical equation of motion in the Heisenberg
representation, as well as the explicit form of Hamilton,s operator occurring in (2),
one gets a quantum-mechanical force acting in the rovibrational systems described
by the Morse potential

or in an equivalent form

The quantum-mechanical force (10) is endowed with an effective potential

which permits rewriting of (6) into an equation amenable to analytic solution

where rJ, DJ, αJ are the changed equilibrium configuration, the modified dissocia-
tion constant and the modified range parameter in the J-rotational state, whereas
the last term ERoteff = f0 - f0-f21f2-1  describes the effective rotational energy. The
obtained results indicate that in rovibrational diatomic systems the time change
of momentum occurs under the influence of force (10) including modified potential
parameters rJ, DJ and aJ; it is a consequence of the action of the centrifugal force
which operates in all systems with rotational degrees of freedom. A look into (6)
reveals that

i.e., the effective rotation energy is a result of a change of the equilibrium configu-
ration r0 —> rJ caused by the centrifugal force. The Schrödinger equation (14) has
the solutions [11, 12]
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where 1 F1(b , c; y) denotes the confluent hypergeometric (or Kummer) function.
Introducing relations (11) and (12) into (17), the eigenvalues (16) may be given in
an equivalent form

A detailed analysis of the obtained results indicates that:
(i) The eigenvalues (21) are given in the form equivalent to that considered by

Pekeris [13] and Flügge [12], who applied, however, a different methodology
in their derivation.

(ii) The final energy formula takes into account the centrifugal distortion effect
which leads to the modification of the potential parameters D0, α, r0 and
appearance of the rotational terms occurring in (21) in the continued fraction
form [14].

(iii) The previous point suggests the possibility of some modification of the energy
eigenvalues (21), by replacing the original dissociation constant D 0 with its
multiparametric expansion [8-10]

where {xi; i = 1, 2 	 is the set of external semi-empirical parameters to be
obtained by the fitting procedure.

It is interesting to note that the formula (21) is usually considered in the
expanded polynomial form of the Dunham type [12, 13], for the reason that it
permits to relate in the simple manner the spectral Dunham coefficients and the
Morse potential parameters. However, in this paper we propose to employ the
eigenvalues (21) in the compact form for straightforward evaluation of the potential
parameters {q0, D0, α}, and next for reproduction of the rovibrational spectra
of the selected diatomic systems. The obtained results are collected in Table I
which also gives the standard deviation σ of the fit, as well as the molecular
constants {ω, ωx, α, B, D} calculated by using the relations (22). The uncertainty
in parentheses is one standard deviation in units of the last quoted digit of the
fitted parameters. The best values for the molecular parameters are derived by the
least-square routine in which the statistical weights proportional to the inverse of
experimental uncertainties are taken as being equal to one.

The modified formula (21) including D(J) in the form of a continued fraction
(23) is applied to evaluate the molecular parameters {q0, D0, α, x1, x2}, and next
to reproduce of the rovibrational spectra of the 7 LiH molecule.

The rovibrational transitions are calculated from (i) the original eigenvalues
(21), (ii) the modified formula (21) obtained by the replacement D0 D(J), and
from (iii) the polynomial Dunham expansion [15] containing a comparable number
of fitted parameters. The results of the calculation are presented in Table II.
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3. Discussion

The application of the deformable body model to molecules described by the
Morse potential has lead to the fraction continued formula for the rovibrational
energy, which seems to be a more general and stronger physically supported equa-
tion describing ro vibrational states of diatomic systems than the formulae obtained
on the basis of the harmonic or Simons-Parr-Finlan potentials. The application
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of the Morse function permits to include the rotational dependence of molecular
constants {ω, α, B, D} and the anharmonic corrections, so the considered formula
may be applied for investigation of the rotational stucture of overtone transitions
in the highly excited rotational states. Because the equation describing effective
rotational energy takes the form of a continued fraction, it permits us to do a
straightforward modification of the original eigenvalues using the expansion of the
dissociation constant into a continued fraction in the rotational quantum num-
ber. Both original and modifled formulae provide quite satisfactory relationship
between the theoretical and the experimental data over a wide range of rotational
states. In particular, the modified formula containing only two semi-empirical pa-
rameters x1 and x 2 reproduces the rovibrational transitions of the 7LiH molecule
more precisely than the corresponding 5-parametric Dunham expansions. Applica-
tion of the other 4- or 5-parametric sets of fitted parameters (especially including
anharmonic term ωx) has led to the worse accuracy of the fit, or even to divergent
series.

Inspection of Table II reveals that parameter x 1 is negative for 7LiH molecule,
hence the dissociation constant diminishes with rotational excitation, and the in-
terpretation of x1-parameter as an indicator of molecular susceptibility to rota-
tionally induced dissociation also holds tue in this case.

Needles to , mention that the presented approach allows us to obtain the
analytic wave function for the original as well as for the modified eigenvalues,
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therefore, the matrix elements of quantum-mechanical operators, the Franck—Condon
faction and intensities of rovibrational transitions can be directly calculated.
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