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The non-zero temperature theory for non-interacting anyon gas is de-
veloped within the random-phase approximation. It is proved that the phase
transition superconducting normal state of anyons does not occur and the
Meissner effect disappears at non-zero temperatures. The mutual correspon-
dence of new Haldane theory of anyons and mean field treatment is found.
A short overview of the fractional statistics theory is also given.
PACS numbers: 05.30.-d, 74.20.Kk

1. Introduction

Recently new physics of two dimensional systems has emerged ([1, 2]) which
may be the key to understanding such phenomena like the fractional quantum
Hall effect ([3, 4]) or perhaps also high-Tc superconductivity ([5, 6]). Topological
properties turn out to be cucial for considerations of 2D systems and lead to quite
new and exotic phenomena in condensed matter, which are more familiar in the
field theory, e.g. the string theory. The simplest example of these field theories is
that described by the Lagrangian with the Chern-Simons (Ch.-S.) term ([7, 8])

where A is a gauge field.
It was shown that μ = 1/4πk describes a spontaneously fixed flux attached

to a charged particle, where k = 1, 3, 5 ... correspond to the Hall fluid ([3, 4])
while k = 2, 4, 6 ... describe the socalled chiral spin liquid ([4, 9, 10]). This model
provides unified picture of the fractional Hall effect and a chiral spin liquid —
two distinct physical realizations of fractional statistics. The existence of the Hall
liquid has been experimentally verified while the chiral spin liquid (similarly to
another one — an anyon superconductor) is still hypothetical.

(399)
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Since in the Ch.–S. term we have only one derivative in 2D case, this term
dominates the Maxwell term fμvfλσgμλgvo at long distances (note that in 3D the
analogous Ch.-S. term — ε∂A∂A has the same scale dimensions as the Maxwell
term). Moreover, the Ch.-S. term is opological since it involves antisymmetric
matrix εijk and not the metric tensor gij (in contrast to the Maxwell term). Hence,
those properties of microscopic theory governed by the metric (like disorder or
impurities) cannot affect the Ch.-S. term — in other words the topological index
is robust against small perturbations.

The presence of the Ch.-S. term implies that the parity P and time reversion
T are violated in a spontaneous manner as in anyon superconduction ([5, 11]) or
owing to the presence of the external magnetic field as in the Hall fluid ([3]).

2. Quantum Hall fluid

We begin with a simple problem of a 2D spinless electron in an external
magnetic field. Without the Pauli term, the Hamiltonian reduces to the oscillator
Hamiltonian:

The degeneracy of these energy levels, called Landau levels, equals SeH/hc, where
S is the area available for the electron. Hence, the filling factor for an N electron
system is v = N/degeneracy = hcp/eH, where p is the density of electrons. The
integer values of v correspond to the socalled integer quantum Hall effect, while
the fractional quantum Hall effect corresponds to v = 1/3, 1/5, 2/5, ..., or more
generally, to (cf. [3])

where ai = 0, ±1, p —odd integer,pi— even integer.
The problem of an electron in a magnetic field can also be considered in

a cylindrical gauge (connected with an appropriate boundary symmetry). The
eigenfunctions and energy eigenvalues have the form
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Due to the above form of the one-particle function, the N non-interacting particle
system (with N not exceeding the degeneracy of the Landau level) is described
by a completely antisymmetric, homogeneous polynomial multiplied by the factor
exp [— EjN._ 1 | z,j |2/ 4121 . In a standard manner the appropriate wave functions are
given by the Slater determinant, which (cf. Eq. (2.6)) reduces to Vandermonde
determinant

i.e. the N-particle wave function has the form

The idea of Laughlin ([12]), cucial for understanding the fractional Hall effect,
consists in introducing a small modification to the above formula, i.e.

is exactly the Boltzmann distribution (with β = 1/p) for 2D plasma and via di-
rect interpretation ([12]) of equilibrium properties of plasma one can find that pth
Laughlin function describes the fractionally occupied lowest Landau level with the
filling factor 1/p. The existence of the hierarchy of filling faction can be explained
by introduction of quasi-holes and quasi-particles — ground Laughlin state exci-
tations ([3, 13]).

The most important feature of the Laughlin state is that it is not a com-
bination of one-particle states (with exception of p = 1 case when the Laughlin
function is the Slater function) and it even does not describe usual fermions. We
rather describe some kind of superfermions ([14]) which topological distinctions
are indicated in Fig. 1.

Recently ([14, 15]) the simple interpretation of fractional Hall states has been
given. If we start with n completely filled Landau levels in the external magnetic
fleld B and we attach additionally to each electron 2m quanta of flux then we deal
with a final mean effective magnetic field Bm = (±2m + 1)B. This field changes
the degeneracy of the Landau levels and the filling factor. A new filling fraction in
effective field Bm is (1151)

For the simplest case of the initially filled lowest Landau level only (i.e. n = 1) we
find
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Both of the above formulae are sufficient to interpret the experimentally observed
hierarchy of the fractional Hall states (the most prominently, for n = 1).

3. Braid group

If one tries to construct a quantum theory for a classical system, one has to
define the complex wave function. Ψ(x) determined on the classical configuration
space A of the considered system. In general this wave function can be multivalued

Ψ

m , = 1, ...C. The only restriction is that when x is taken along a closed loop
in A, 

Ψ

m must transform according to C-dimensional unitary representation of the
first homotopy group of A, i.e. π1(A). Since this representation could in general
be non-unique, therefore one can deal with distinct realizations of the quantum
theory for the same classical system.

If we consider the N identical particle system, then

where M is the physically defined manifold for one particle, MN is the Nth Carte-
sian product, Z is the subset of all elements of MN that two or more particle
coordinates coincide, SN is the permutation group of N elements.

If M = R3 (as for 3D particles), then

and we deal only with two distinct one-dimensional unitary irreducible repre-
sentations of SN: 1 - corresponding to the quantum theory of bosons, and ±1
(according to the sign of permutation) — corresponding to the theory of fermions.

If, however, M = R2 then the situation is much more complicated. For 2D
particles in the plane ([16])

where i interchanges particles i and i +1. In order to compare BN with the SN
group let us also present the definition of SN
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From the above it is clear that BN is an infinite group, without cyclic elements.
SN is not a subgroup of BN (SN is the quotient group, SN = BN/{minimal
normal subgroup of elements α2i for all i}).Hence, each representation ofSNis
the representation of BN but not conversely.

One-dimensional unitary representations of BN are
ei

θ

 , (3.6)
where θ = 0 corresponds to bosons, θ = π to fermions and other values of θ
correspond to anyons — new types of quantum particles in the plane.

It is interesting to note that π1 (A) for other manifolds like a torus (relating to
periodic boundary conditions in the plane) or a sphere admits also the existence of
anyons ([17]). It might be important with regard to superconductivity of fullerites,
where multiply connected topology could be related to charge conducting particles.

4. Chern-Simons term

Due to the Aharonov-Bohm effect it is clear that for 2D particles with a
charge Q and a flux Φ attached to each particle, the wave function acquires the
phase

if one particle turns the loop around the other. So, the statistics transmutation
caused by the flux Φ is Dθ = QΦ.

The question is how to couple the flux to the charge of the particle. In
the formal manner it is done by inclusion of the socalled Chern-Simons term to
effective Lagrangian of the system. This term has the structure ([7, 8, 18])

The dynamics of the gauge field A is described by the equation

From the above equation it follows immediately that

One can rewrite the above within a more complete formula for the full La-
grangian of non-interacting particles
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If we choose the specific gauge ∂αAα = 0, we find (by virtue of dynamics
equation)

which allows us to write the Hamiltonian (corresponding to the Lagrangian (4.5))
in the following form ([18]):

This Hamiltonian is the startpoint for all further considerations of the anyon
system. Let us underline, however, that the above formulation is given in the
fermion representation of anyons, since the initial Lagrangian (4.5) was written
for spinless 2D fermions with the flux attached (by the Ch.-S. term). Note also that
in 2D we have no usual quantization of the spin since in the plane all revolutions
commute in contrary to the 3D case.

5. Anyon superconductivity

If one considers the system of N non-interacting anyons in the anyon rep-
resentation, the relevant Hamiltonian and translation operators have the simple
form (ħ= c =1)

In this representation the wave function is, however, very inconvenient. It is mul-
tivalued owing to the phase factor eiθ due to interchange of identical particles.

In order to simplify the wave function one can perform the transmutation
to bosons or fermions by adding an appropriate flux to each particle so that the
Aharonov-Bohm phase gives the phase θ. Hence, the anyons of the θ type (with
a charge q) can be represented as fermions with the flux φ that qφ/2 = Θ -
or bosons with the flux φ that qφ/2 = θ. After the transmutation to fermion
representation (for θ = 741 - 1/f)) we have

Note, however, that in the anyon representation

In the fermion representation we deal with the same property
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The basic idea of anyon superconductivity consists in the conjecture ([20])
that the phase transition to superconducting state is described in the anyon system
by spontaneous violation of the commutation relation according to the following
formula:

with B being the macroscopic order parameter (N is the number of particles). The
above holds only for statistics parameters θ = π(1 - 1/f) with f being an integer
(which will be commented afterwards) and for other statistics superconductivity
it does not appear.

Because the idea of the violation of a commutation relation is the gener-
alization of the spontaneous symmetry violation, an analogue of the Goldstone
theorem is suggested (cf. [20]). The appropriate massless boson is the gapless col-
lective (sound-like) mode which was found for non-interacting anyon system by
Fetter, Hanna and Laughlin ([21]).

There exists a simple model of the realization of the described above violation
conjecture. It is the socalled mean fIeld approximation. Within this approach the
flux sum (in the fermion representation) is represented by the flux of the mean
statistical field (see Appendix A)

if we put j0 = const = p, B = 2πp/ef.
Note that the better approximation, the higher density p is. In the presence of the
mean field B

For this mean field B the degeneracy of the Landau levels is SeB/2π and the
filling factor is (I - θ/π) -1 . If θ = π(1 - 1/f), f being an integer, one obtains
f completely filled Landau levels. Hence, only for such statistics parameter values
we deal with the gap in the energy spectrum. Let us underline that this model
yields the following superconducting properties:

1. an energy gap ∆=eB/m,

2. the Meissner effect (for the ground state of non-interacting anyon gas),

3. a gapless collective excitation (sound-like boson mode — the Goldstone
mode which restitutes the commutation relation) ω = √fωcα0q, where
ωc = eB/m, a0 = [1/eB] 1 / 2 (both the Hartree-Fock approximation [22]
and the random-phase approximation (RPA) [21] support this result).
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To be more specific let us comment shortly on the Meissner effect within the
mean field approach. If b is the external magnetic field, the total magnetic field
B+b (for b ↑↑ B) or B - b (for b T ↑↓B)causes the rearrangement of the Landau
levels which leads to increase in energy according to the following formulae:

It is interesting to observe that the penetration of the external magnetic field is
inconvenient for the sufficiently low fleld b, despite its orientation with respect
to the internal statistical mean field B (linear terms in Eqs. (5.11) and (5.12)).
Nevertheless, for higher b, with the nonlinear terms being dominant, the b field
penetration reduces the energy distinctly for two respective orientations of B and
b. The critical values of b are

Description of the Meissner effect (in the framework of the random-phase approx-
imation [20, 21]) allows also for estimation of the coherence length for the anyon
superconductor via formal application of the Pippard formula to the correlation
function for the anyon gas. This function has the following form (for f = 2, cf.
[21]): K(q) = Kyy(q,ω = 0) = p[1 — (qa0) 2 3/8 ...] and via the comparison with
the Pippard formula p[1 - (q6) 2 1/5 ......] one can find that ξ0 = (15/8) 1 / 2 a0
(ξ0 turns out to be of order of the interparticle separation length).

6. Linear response theory for ideal anyon gas

The free-anyon Hamiltonian II can be separated into two parts: II = H0
Hi, where H0 is the mean field Hamiltonian which can be treated as the unper-
turbed term and

is the interaction Hamiltonian ([18, 21]). In the above formula Aj is the averaged
statistical field (mean field) and A2 = A(xj) is its exact value. The mean field
current density is given by

(braces denote an anticommutator) and the full current density is
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The problem of interest is the linear response of the system to an external elec-
tromagnetic field described by the scalar potential Фex and vector potential Aex .
The relevant external perturbation Hamiltonian is given by the formula

The linear response contains a diamagnetic and a paramagnetic contribu-
tions. The second one is proportional to the retarded current-current correlation
function

It is convenient to represent the explicit form of the response in the momentum
space. Then the induced electromagnetic current equals

The kernel KI"' characterizes the linear response of the system and is equal to

Hence, it is clear that in order to get the linear response it is necessary to cal-
culate the full current operator retarded correlation function ∆μνR. However, it is
convenient to consider first the retarded correlation function of two average-field
currents (i.e. for j instead of J)

The random-phase approximation consists in approaching DR by the sum of
bubble graphs which can be written as

The interaction matrix V can be found if the Hamiltonian Hl is approximated by
the quadratic form in the momentum space
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As usual, DI can be found via analytic continuation of the appropriate time-ordered
correlation function.

The procedure described above was performed by Fetter, Hanna and Laugh-
lin within T =0 formalism ([21, 23]). The most important results are: the col-
lective mode ωq =√fq and Meissner effect KRPA(q)= 1 — fq 2 3/16, both being
a strong support for the idea of superconductivity of the ideal anyon gas with
θ= π(1 - 1/f),fbeing an integer ([24]). In the following section we generalize
the RPA to the non-zero temperature case.

7. Anyon gas at non-zero temperature random-phase approximation

A very interesting problem is to generalize the anyon RPA for non-zero
temperatures. The linear response at finite temperatures is described as in the
previous section if, however, brackets (...) denote thermodynamic expectation
values (i.e. grand canonical ensemble averaging). The problem is to calculate the
temperature particle and current density correlation function which can be written
as

In Eq. (7.1) we have omitted the terms associated with the uniform density
in Eq. (6.4). From the Wick theorem we obtain two contractions but only the
one presented in Fig. 2 contributes. The other vanishes because for v, u = 0 the
appropriate matrix elements cancel with those omitted in Eq. (7.1) and for v, μ 0
the current vanishes in the unperturbed state. By virtue of the Feynman ules for
the temperature Green functions one can write
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where β = ħ/kT and ωl = (2l+1)π/β since we deal with the fermion representation
of the anyon gas, and uk = 2kπ/β (being the transfer of the Matsubara frequency
for the fermion system). The Matsubara-Green function has the form

where IIm is the projector on the mth Landau level (εm = m 1/2, in our units).
Similarly as in [24] the Fourier transform of D0 can be presented as (see Ap-
pendix B)

if uk 0 ≠ 0, 	 = [exp(εm - μ/ħ)β+1]-1. However, if uk = 0 and m = n we deal
with a double pole in Eq. (7.6) and thus dnn (uk = 0) = -βn0n  (1 - n°n ). After some
calculation (see Appendix B) and the analytic continuation (iuk →ω) one finds

Note that from the above, in the limit T → 0 we rederive the result for T = 0 (the
additional term, for ω = 0, vanishes at T = 0).

In order to find the collective density modes it is enough to know Ej for small
ω

 and q. The expansion with respect to ω and q leads to the following expressions
(for ω ≠ 0):
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in dimensionless units. Since the chemical potential is determined by the equation
∑non=f,one finds thatμ/h= f -1/2β exp(— fβ) at low temperatures ([25]).

Therefore α= f +2/f exp(-β/2) for T →0 (cf. also [26]).
Taking into account the above formulae we can rewrite the determinant

(6.13) in the following form:

Hence, the collective mode has the sound-like spectum

To obtain the retarded correlation function ∆R the difference between the
tue current and the mean-field current needs to be known. In the momentum
space we obtain (cf. [24]):

where U is a simple matrix:

Hence, the linear response kernel is equal to

For ω = 0 one finds
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where = β/f ∑∞njnon0 nj n0n(1-non). Hence, the Meissner kernel K(q) = Kyy (q, 0)
is given by the formula

and at low temperatures τ0 2β/f exp(-β/2) (cf. also [25, 26]).
Let us note that the same result was obtained by Fetter and Hannna within

the Hartree approach ([26]). Since K(0) = 0 the Meissner effect disappears at
non-zero temperatures. In [26] it is argued, however, that for finite size sample the
q →0limit is, in fact, ranged by 1/L quantity and the Meissner effect still persists
at T ≠0 though the screening of the field is only partial. Such an attitude allows
one to predict the semi-critical temperature (via the condition L=a0/√  τ0 cf.
[26]) at which the Meissner effect completely disappears.

The response kernel similar to that in Eq. (7.24) was also found by Hosotani,
Hetrick and Lee within the self-consistent field approach ([27]). In that paper,
however, the complete electrodynamics was taken into account which makes the
physical situation quite distinct and the finite penetration (i.e., the Meissner effect)
of the static magnetic field corresponds rather to the gap in collective excitation
spectum (cf. also [25]). Lack of the critical behaviour in Eq. (7.24) resembles a
typical situation for various 2D systems for which no phase transition exists and
other ideas instead of long range order are suggested, e.g. a Kosterlitz—Thouless
phase transition. The relevance of the Kosterlitz-Thouless idea to anyon physics
is discussed to some extent in [28].

8. Comments

A very interesting question is: are fractional statistics available for one-dimen-
sional systems? Despite the classic paper ([1]) where the pair of particles on the
line was considered, the answer is not clear as yet owing to the peculiar topology
of 1D (braidings correspond to the plane topology only). Also the permutation
of particles on the line causes questions close to quantum theory interpretations
(particles on the line are ordered and this influences the group stucture).

Let us consider two non-interacting particles in 1D. Then the configuration
space is the half plane and the Hamiltonian has the form

where x = (x1 + x2)/2 and z = |x1 — x2| > 0. Conservation of probability on the
boundary of the configuration space (the line x 1 = x2) leads to the condition

(it means that the normal to boundary component of current vanishes). Hence [1],

and corresponding wave functions
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One can note that  = 0 corresponds to bosons, while -1 = 0 to fermions. Other
values of  would be relevant to fractional statistics. The generalization of the
above to N-particle system on the line is evident.

Let us note also that recently Haldane ([29]) has suggested the new definition
of the fractional statistics free of the braiding term and thus applicable to 1D space.
The spirit of this definition consists in the generalization of the Pauli principle.
Limiting fractional statistics to topological excitations confined to the interior
of condensed matter sample, the statistics is introduced by the g factor in the
following formula (cf. [29]):

which describes the available 'free room" — d α for particles of species α if the
number of particles of species increases by ΔNβ. For fermions go

β
= δαβ, while

for bosons gαβ = 0. The above formulation leads to description of the Hall fluid
equivalent with that of braiding group approach ([29]).

It is especially worth noting the fact that gαβ has to be a fractional number to
preserve d being an integer. Hence, if e.g., g = 1/3 then ΔN = 3. (integer number).
It is the same property as for superconducting anyons with θ = π(1 - 1/f). In
this case we have f exactly filled Landau levels and we can change the number of
particles only by the portion ΔN = f • (integer number) since we have to add the
same number of particles to each filled Landau level.

Since the integral for the average statistical fleld (see Appendix A) is con-
vergent only for finite regions, it is not a coincidence that the Haldane idea of
fractional statistics agrees with the mean field anyon treatment. To see this clearly,
it is convenient to add some external flux to the "statistical" one (in the fermion
representation) in order to locate all particles onto the lowest Landau level. Be-
cause of the energy gap we assume that particles do not achieve higher levels. The
particle 'free room" (in the lowest Landau level) is then given by (ħ = c =1)

and by virtue of Eq. (8.5)

It is clear now that since the degeneracy is an integer, the number of particles in
the system for e.g. θ = πp/m (p/m — an irreducible fraction) can be changed
only by portions of m. It is interesting to note that anyons on a sphere like those
on a finite surface obey the same restriction.
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Appendix A

The mean field comes from the integral (5.7)

if we assume that p(r) = const. This is the double integral for an infinite region
R2 and henCe it is neccessary first to check its convergence. As it is known

However, in our case, the second integral is divergent for R 2 (and for any infinite
region), then the integral given by Eq. (A.1)) is either.

But the integral (A.1) is convergent for finite regions. We have

It should be noted that these integrals can be iterated only in the manner as it is
written above (otherwise case one finds divergencies). Then

where α, b, c, d, x(y), X (y), y(x), Y(x) describe the limits of the region D. It can be
seen that the above integral is equal to the contour integral

which is the Gauss integral and it equals

Therefore the mean field is well defined for finite regions. However, one can obtain
the mean field for R2 while taking the limit of Eq. (A.7) as the support of p extends
over all the space (cf. [20]).

Appendix B

The Landau level projector can be written as follows (1231):
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|z| = |r1-r2| and Lt., are the Laguerre functions. The corresponding Fourier
transform is given by

To calculate the correlation function, Eq. (7.1), let us first consider the k0 (k = x, y)
element

where dmn is defined by Eq. (7.6). Introducing the spatial Fourier transform of the
translationally invariant functions gm and gn, we obtain

The spatial factor z x r12 can be written as-izx
q

 acting on the exponential
term exp(iq• r12) and an integration by parts with respect to q expresses the above
equation as a spatial Fourier integral. Similarly Eq. (7.5) can be found.

Let us consider uk ≠ 0. In the element D000 we are dealing with the integral
([23])

which is symmetric with respect to the interchange of indices. Therefore

(dmm = 0 for uk 0 0). After the interchange of indices in the second sum one finds

The elements k0 and 01 involve the integrals

and (cf. [23])

Then

which follows from the antisymmetry of Imnx ∑j(ω)=∑juk)) . Moreover,
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The other elements involve integrals Pan which are symmetric under interchange
m 4-4 n. They have the form (cf. [23])

where ∑3 = 2π/f ∑m>n(non - nom)Lmn=1+ γx+... 	 . In Eq. (7.7) we have
taken only the flrst term of the expansion of £.3 in order to preserve the current
conservation law. It was suggested in [20] that the diamagnetic part in Eq. (6.8)
is not quite right. If taken correctly it will cancel the further expansion of ∑3 .
However, in any case, the term Dxx  affects neither the dispersion relation (6.13)
nor the Meissner kernel (7.24).

The last term equals

which gives all elements of the matrix (7.7).
Similarly as presented above, the additional term for uk = 0 in Eq. (7.9) can

be found.
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