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One of the methods of determining theoretical annihilation character-
istics in real metals is the approximation called Bloch modified 1adder ap-
proach. In this approach a Bethe—Goldstone type equation is solved with an
effective electron-positron potential obtained previously for jellium of the
corresponding electron density. If one wishes to include the dependence on
the local electron density of the e+-e - effective potential in this formalism, it
is necessary to know this potential for jellium, for metallic and above metal-
lic densities. A review of different proposed e+-e-  potentials is presented
and their correctness is evaluated from the point of view of their application
in a Bethe-Goldstone type formalism which is the jellium analogue of Bloch
modified 1adder approach.
PACS numbers: 78.70.Bj, 71.60.+z

1. Introduction
The purpose of this work is to study how successful different effective elect-

ron-positron potentials are in a . Bethe-Goldstone (BG) formalism. A review of
existing approaches in the theory of e+-e- interaction in metallic systems is pre-
sented in Ref. [1]. The BG-type approach proposed first by Kahana [2] leads to
reliable results only if the potential used in the BG equation is self-consistent
[3, 4]. Self-consistency, however, is difficult to obtain within the BG formalism,
so it is interesting to find out to what extent the potentials obtained in other
approaches can be used successfully in the BG equation. In particular, we would
like to know how the potential calculated using the approach called perturbed
hypernetted-chain approximation (PHNC) [5, 6] works when applied in the BG
equation. The BG formalism is particularly important from our point of view since
it underlies one of the existing approaches to e+—e - interaction in real metals [1].
Indeed the formalism developed by Carbotte and Salvadori [7] and applied later
extensively by Sormann under the name of Bloch modified ladder approach (BML)
[8] is the real metal analogue of the BG approach which in its original form applies
only to jellium. The scattering of the state with momentum p on the positron is
described by the amplitudes 4 1 (k) which obey the equation
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where θ(k'—kF) equals 1 for states k' outside the Fermi surface and 0 otherwise (for
details cf. [1] and the original papers). In Eq. (1) it is assumed that the potential
of e+-e — interaction Vs is position independent. This assumption is physically
incorrect since it assumes that only the electrons from the outer shell participate
in the screening of the positron. The approximation underlying BML could be
improved by allowing for a position dependence of the e+—e- potential of the
interaction. In the case when the local density approximation is used (cf. [9], [10]),
the local shape of the e+—e — potential should correspond to the potential calculated
for jellium of density being equal to the local density of the electron gas in the
real metal. In this way, the need appears for an e+-e— potential computed for
all local electron densities occurring in a real metal, especially for high densities
(rs < 2). No completely self-consistent potentials have been obtained for these
densities within the BG formalism. Therefore, to these cases we will try to apply
the potentials obtained self-consistently within other approaches, in particular the
PHNC potential, the hypernetted-chain potential (HNC) in the form proposed by
Gondzik and Stachowiak [11], the random phase potential (RPA) and the potential
proposed by Jarlborg and Singh [12]. We are also interested how these potentials
work at metallic densities when used in the BG equation, since self-consistent
calculations have been performed within the BG formalism for very few values of
rs (2, 4 and 6) [4, 8].

2. Results

In this short contribution we can present only a small part of the results
obtained in our calculations. Moreover, some more interesting aspects must still
be investigated.

Some of the potentials used in our calculations are shown (in the momentum
space) in Fig. 1 for rs = 1 and 2. We give here the formula for the Jarlborg-Singh
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(J-S) potential which has not been used frequently in the positron physics

In Fig. 2 it is shown that the annihilation rates calculated in the BG for-
malism at metallic densities are quite different from those obtained with the same
potential within the formalism for which it is appropriate. The HNC potential
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while applied in the BG equation seems to lead to better results than the PHNC
potential.

The momentum dependent enhancement factors are shown in Fig. 3 for r s =
0.5 and 2.

3. Conclusions
In general the potentials used in the BG equation lead to different predic-

tions concerning the annihilation characteristics than when used in the formalism
in which they have been determined. In particular, the PHNC potential fails com-
pletely for rs > 2.5, while the HNC potential leads to quite satisfactory results. On
the other hand, for the lower values of r s < 2 the PHNC potential gives reasonable
results and probably could be used when applying BML-like equations to core elec-
trons, while taking into account the local density. This point, however, needs more
thorough investigations. Remark that the PHNC approach includes the effect of
the non-orthogonality of the one-electron wave functions and in this regard differs
from the BG formalism. On the other hand, unlike the HNC approximation, and
similarly as the BG approach it includes the effect of the kinetic energy of the
positron.

The Jarlborg—Singh potential when applied in the BG equation leads to re-
sults which differ much from those obtained for any other potential at any electron
density.
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