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A simple approach to the process of translational energy relaxation in
dilute gases due to Dahler, Malkin, Shizgal and others is extended to the case
of systems with chemical reaction. Fundamental quantities characterizing the
relaxation processes such as the relaxation time and collision numbers during
this time are computed for a number of molecular models of the chemical
reaction (the Prigogine-Xhrouet modeł, the line-of-centers model, a modified
line-of-centers model, and reverse versions of these models). Results of this
analytical theory are compared with the results of numerical simulations of
solutions of the appropriate Boltzmann equation with the use of the modified
Nanbu-Babovsky method. This comparison leads to very good agreement
between the analytical theory and numerical calculations. A marked influence
of the chemical reaction on the translational relaxation in a dilute gas is
another important conclusion of this paper.

PACS numbers: 82.20.Rp, 82.20.-w, 82.20.Mj, 82.20.Wt, 05.20.Dd

1. Introduction

The problem of energy relaxation in many-component dilute gases is very
important for the chemical kinetics, in systems with shock or detonation fronts
and in many other situations. A simple intuitive theoretical description of the
translational energy relaxation in two-component dilute mixtures of non-reactive
gases was suggested by Malkin [1]. Such a description can be also obtained from
the approach of Deshler and coworkers [2, 3]. A similar method was used for
the analysis of relaxation of translational energy in perpendicular directions [4].
This method was verified by a numerical solution of the appropriate Boltzmann
equation [5] and good agreement was obtained between analytical and numerical
results. A similar comparison for the energy relaxation in a binary mixture of hard
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spheres also produced good agreement between analytical theory and numerical
computations [6].

An extension of the Boltzmann equation to a gaseous mixture of chemically
reacting gases was suggested many years ago by Prigogine and coworkers [7, 8].
It is shown by these authors and also by many authors of subsequent investiga-
tions (see for example Ref. [9]) that a chemical reaction can perturb the velocity
distribution functions of reacting gases and influence the rate of chemical reaction
and also transport phenomena in such systems. Shizgal et al. developed a more
advanced nonequilibrium theory of temperature relaxation in a binary gas [10, 11]
and time dependent theory of hot atom reactions [12-14]. In Ref. [13] an expression
for time derivative of one component's temperature resulting from elastic collisions
between non-reactive gaseous components was derived from the Boltzmann equa-
tion and compared with the other expressions [15-17]. The expressions from Refs.
[13] and [17] were shown to be equivalent. The other expressions [15, 16] have not
a form of the relaxation equations in which a difference of temperatures usually
appears. It should be emphasized that the expression from Ref. [6] is equivalent
to the expressions of Shizgal [13] and Morse [17]. The time derivative of tempera-
ture for component of chemically reacting gas was calculated by Shizgal [18] using
the Chapman—Enskog method of solution of the Boltzmann equation. The energy
change during the process of electron attachment to molecules was considered by
Shizgal et al. [19-21].

Generally speaking the temperature (mean kinetic energy) of reacting gas
can change due to two effects (see Appendix for more explicit discussion of this
point):

(1) Energetic effect of this reaction.
(2) Relaxation mechanism due to elastic collisions in the system.

In distinction to the effect (1) this relaxation mechanism is proportional
to the energy difference between reacting components. In this paper we confine
our attention exclusively to the point (2) neglecting the influence of energetic
effects of chemical reaction on translational energy relaxation in the system (see
Appendix). In distinction to this paper the authors of the papers quoted above
[10-14,18-21] considered a global influence of the chemical reaction on change of
temperature of single reacting component. In consequence these authors did not
analyze a simple description of temperature (or mean kinetic energy) relaxation
in which the time derivative of energy is proportional to the difference of energies
of reacting components.

We can expect that the effect of the chemical reaction on the relaxation phe-
nomena in gases should be very significant because both the processes mentioned
have the same tensor character (see Ref. [22]).

The aim of this paper is to extend the analytical description of translational
energy relaxation in dilute gases suggested by Dahler and coworkers [2, 3] and by
Malkin [1] to the important case of gaseous mixtures with chemical reaction and
compare such an extension with results of the numerical solution of the appropriate
Boltzmann equation. Following ideas of Malkin [1] we focus on the elastic colli-
sions in the system with chemical reaction. In our approach the role of a chemical
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reaction is confined to a modification of the elastic collision cross section. In this
way we obtain generalizations of the well-known energy relaxation equation and
expressions for the relaxation time accounting for simple models of chemical reac-
tion in the system. To our knowledge such generalization has not been suggested
so far in the literature. Using these expressions we derive analytical formulas for
such quantities as the relaxation times and collision numbers during the relaxation
time for various molecular models of chemical reactions. The results obtained from
these analytical equations are compared with the computer results obtained by a
direct simulation method of solution of the Boltzmann equation. Such Monte Carlo
results play a role of missing experimental data. Preliminary results of the theory
developed here was presented previously [23].

This paper is organized as follows. In Sec. 2 we specify the model of a dilute
gas reacting chemically. Section 3 is devoted to the presentation of the theory of
translational energy relaxation generalized to the case of a dilute binary gas with
a chemical reaction and to the derivation of formulas characterizing the relaxation
process and chemical reaction for specific molecular models. The scheme of nu-
merical solution of the Boltzmann equation accounting for the chemical reaction
is presented in Sec. 4. In Sec. 5 we analyze the comparison between the analytical
and numerical results. The discussion of results obtained in this paper is presented
in Sec. 6.

2. The model

We analyze a dilute gas composed of particles A and B in which the chemical
reaction

takes place. We assume that the reaction (1) is in an initial state in which con-
centrations of products are negligibly small in comparison to concentrations of
constituents A and B and that the collisions involving these products can be
omitted in a description of the system. We assume also that the number densities
of A and B fulfill the inequality:

and that the heat of reaction (1) qch = 0.
Following the idea of Prigogine and Xhrouet [7] we describe the elastic and

inelastic intermolecular collisions using the concepts of the elastic differential cross
section σΑΒ and inelastic (reactive) collision probability α. In this paper we focus
on two types of molecular models of the chemical reaction.

The first one can be associated with a common case of chemical reaction
which can proceed when the relative kinetic energy of colliding molecules exceeds
the threshold energy corresponding to a relative velocity g*. To this category
belong:
(a) The Prigogine-Xhrouet model [7]
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where

dA, dB are diameters of molecules A and B modelled as hard spheres, gAB is the
relative velocity of colliding molecules. This model is in fact the simplest realization
of a threshold relative velocity idea.
(b) The line-of-centers model of Present [24, 25]

This model leads to the well-known Arrhenius type of expression for the temper-
ature dependence of the rate of chemical reaction (see for example Ref. [26]).
(c) The same property has a modified version of the line-of-centers model which is
in fact a simplified version of the simple reacting sphere model analyzed in detail
by Xystris and Dahler [27]

where k is the unit vector parallel to the line joining the centers of colliding
molecules.

The second type of chemical reactions considered in this paper is less com-
mon than the first one. It includes certain kinds of recombination and ion-molecular
reactions in which low energy of relative motion of colliding molecules is neces-
sary for reactive collisions. Such reactions can be sometimes characterized by a
"negative" Arrhenius activation energy [28]. This type of chemical reaction can be
associated with the following molecular models [28]:
(d) The reversed Prigogine-Xhrouet model

(e) The reversed line-of-centers model

(f) The reversed modified line-of-centers model

where gL denotes the limiting value of the relative velocity of colliding molecules
for the reactive collision.

3. Analytical theory

An essential idea put forward by Dahler and co-workers [2, 3] and presented
in a very straightforward way by Malkin [1] can be summarized as follows. The
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relaxation of translational energy in the two-component mixture of dilute gases
can be described by the equation

where ΕA and EB denote translational energies for components A and B, respec-
tively, ((...)) denotes averaging over velocity distribution, τ denotes the relaxation
time. Assuming that

we can write the following expression for the initial time (t = 0) of the equilibration
process

If we assume that the initial velocity distribution function of the component A can
be described by the Maxwell-Boltzmann expression fA (0), then

where mA, cA denote the mass and velocity of molecule A, whereas nA and TA are
the number density and temperature of the component A, and kB is the Boltzmann
constant. Considering a gas without chemical reaction, analyzed by Dahler and
coworkers [2, 3], Malkin [1] suggested the following simple expression:

where c'-A is the velocity of molecule A after the elastic collision with molecule B
(collisions between molecules A are neglected under the assumption expressed by
Eq. (2)), ((...)) coll denotes the following averaging within the collisional cylinder:

where f denotes the Maxwell-Boltzmann velocity distribution function of par-
ticles B and ΩAB is the solid angle. Let us observe that the velocity c'A can be
expressed by relation [30]

On the other hand according to the assumption (11) we have

Substituting Eqs. (13) and (14) into Eq. (12) we obtain for hard spheres

Equation (18) can be generalized for the system with the chemical reaction (1)
under conditions (2) and (11) in a spirit of the approach given by Prigogine and
coworkers [7, 8]
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where

Equation (19) is the starting point of our analytical theory. The difference between
this equation and the approaches used in the literature is discussed in Appendix.
Before performing detailed calculations for chosen molecular models of chemical
reaction let us introduce some useful quantities. We define the collision frequency
of elastic collisions as -

In the absence of the chemical reaction (1) Ν eΙ AΒ coincides with the total collision
frequency NHSAB for the gas composed of hard spheres. If the chemical reaction (1)
takes place the reactive collision frequency can be defined by the relation

We can also introduce the collision numbers during the relaxation time

where the subscripts "0" are used to indicate that the calculations are performed
at t = 0. On the other hand N5 can be related to the rate of the chemical
reaction (1)

where k is the rate constant. Taking into account Eq. (2) we get

where the relaxation time for chemical reaction (1) reads

Comparing Eqs. (25), (26), and (28) we get the relation

Before calculating the quantities τ, NelAB, N5 ,Z, Zel, and Zre introduced above,
let us briefly discuss how the problems considered in this paper are related to the
central problem of the chemical kinetics , i.e. the calculation of the rate of chemical
reaction.

In this paper we analyze rather the special situation when two reacting com-
ponents have different temperatures TA and TB. Such a situation can be realized
in systems with chemical reactions (see e.g. Refs. [14, 31-33]. In this situation the
rate of chemical reaction is defined by the relation
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Assuming that the chemical reaction does not perturb significantly the molec-
ular velocity distribution, we can replace functions fA(TA) and fB(TB) by the
Maxwell—Boltzmann distributions for temperatures TA and TB. Substituting these
distributions into Eq. (30) and changing variables CA and CB to new variables GT
and gAB defined by the relations

and using the well-known line-of-centers model (Eq. (5)), we get the following
expression for the rate of chemical reaction:

Equation (33) is a generalization of the well-known rate expression for the colli
-sional theory of chemical kinetics [26] to the case of the two-temperature system

and can be reduced to this expression by substitution TA = TB. An equivalent
expression was obtained by Shizgal and Fitzpatrick [12].

Relating Eq. (33) to the model considered in this paper we can notice that
the condition (11) can be written as

Substituting Eq. (34) to Eq. (33) we get

Now we proceed to the calculation of explicit expressions of the quantities NelAB,
τ, Z, Zel, Zre characterizing the translational energy relaxation in the system
considered. Similarly to Eq. (36) we define

where

Substituting definitions (3)-(9) into Eqs. (20) and (21) we get

where for i = HS, PX, LC, mLC, rPX, rLC, rmLC corresponding to the system
of hard spheres without the chemical reaction, the model of Prigogine-Xhrouet
(Eq.(3)), the line-of-centers model (Eq. (5)), the modified line-of-centers model
(Eq. (6)), the reverse Prigogine-Xhrouet model (Eq. (7)), the reverse line-of-centers
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model (Eq. (8)) and the reverse modified line-of-centers model (Eq. (9)), respec-
tively, we obtain the following expressions:

Let us notice that expressions for N can be obtained from expressions for NÁ13
taking into account Eq. (22). Substituting Eqs. (3)-(9) into Eq. (19) we get

where for i = HS, PX, LC, mLC, rPX, rLC, rmLC which have an analogous
meaning as described above, we obtain

In an analogous way we obtain from Eq. (23)

and also from Eqs. (24) and (25)

where



Theory of Translational Energy Relaxation in Binary Mixtures ... 1013

and

where

These results for Zre are especially interesting because of Eq. (29).

4. Numerical simulations

In order to compare the analytical results presented in Sec. 3 with the results
obtained by numerical solution of the Boltzmann equation we apply the socalled
direct simulation scheme. Starting in 1960,s with Bird [34, 35] several algorithms
were introduced [36, 37] in 1970,s. In 1980 Nanbu proposed a scheme that could
be based on the Boltzmann equation in a very satisfying manner [38, 39]. An
overview of the methods mentioned is given in Ref. [40]. Bird's scheme is the
most effective and most frequently used, although some doubts arose concerning
artefacts (see Ref. [36] et loc. cit.). Babovsky [41] introduced a modification of

Nanbu's method which made its efficiency comparable to that of the Bird method
[42-44]. In order to deal with chemical reactions and relaxation of energy we
introduce small changes (possible only for small time increments). This method
has been already used successfully in the previous papers [5, 6].
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We now recapitulate the main ideas of this scheme. We take into account
that the probability Pij of collision between two spheres i and j is

where V is the volume of the system analyzed and (ΔV)ij is the volume of the
collision cylinder for the spheres i and j 	 •

where Δt is a time step and d = dA = dB because we assume that the colliding
spheres have identical diameters. Equations (73) and (74) are used in our simu-
lations for which we perform R runs in order to diminish fluctuations connected
with a small number of particles I in the system considered.

Let us now briefly characterize the simulation scheme.
A typical run is carried out in the following way:
I. During the first time step Δt = t 0 we perform the following operations:

(a) We put i equal to one.
(b) For the particle i only one partner is randomly chosen from the I — 1

remaining particles. An (elastic or reactive) collision between the particles i and j
is carried out with the probability (I - 1)Ρ1  /2. If no collisions occur the velocities
remain unchanged. Otherwise we decide, according to the model applied (e.g. the
line-of-centers mode1), if the collision is an elastic or a reactive one. In the case
of an elastic collision both of the velocities (different from Nanbu's simulation
scheme [38-40], because t 0 is small enough) are changed according to the collision
equations of hard spheres. We introduce as in Refs. [38-43] a randomly chosen gij .

If the collision is a reactive one the molecular velocities remain unchanged, for we
neglect its influence on the velocity distribution.

(c) The procedure (b) is repeated for the next i and so on up to i being equal
to Ι.
Π. Now (a), (b), and (c) are performed for the second time step and so on. After
each time step the kinetic energies and numbers of reactive and elastic collisions
are collected for the final evaluation.

Then another initial situation can be created for the next un. R uns are
carried out. Each result presented in this paper is an arithmetic mean over all R
uns. We get values for energies, temperatures of the components Α and B as well
as an average of the numbers of elastic and reactive collisions.

We chose the following system for numerical simulations. A volume V =
1666.7 nm3 contain 50 spheres Α and 450 spheres B having diameters dA = dB =
0.35 nm and masses mA = mu = 16 g/mole. This corresponds to the packing
fraction of 0.0067348. At the beginning of the relaxation process distributions of
molecular velocities cA and cB corresponded to the temperatures of ΤA = 600 K
and TB = 0 K, respectively. We performed 1000 uns R for 5 time steps Δt =
t0 = 0.6941 x 10 -13 s. Because t 0 « τ we assume that the time interval 5t 0 is
short enough for the equilibration process to be in its initial state and that it is
sufficient to obtain the results for the relaxation time τ using a simple formula
which follows from Eq. (12)
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where superscripts (0) and (5) are used to denote the values of Ελ after 0 and 5
time steps, respectively.

5. Results of analytical theory and numerical simulations

In order to compare results of the analytical theory presented in Sec. 3 and
results of numerical simulations described in Sec. 4, in Figs. 1-7 we plotted quan-
tities describing the translational energy relaxation for the system characterized
by various molecular models (Eqs. (3)—(9)) of the chemical reaction (1). The de-
pendence of these quantities on reduced energies ε* and 5L obtained from various
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analytical expressions derived in Sec. 3 (Eqs.(41)—(72)) is represented by contin-
uous (solid or dashed) lines. Results of numerical simulations of the solutions of
the appropriate Boltzmann equation are represented by points (small circles or
crosses).

Generally we can notice very good agreement between two types of the
above-mentioned results (see Figs. 1-4). Another obvious observation is a very
strong dependence of the quantities characterizing the translational energy relax-
ation (e.g. the relaxation time τ defined by Eq. (19)) on the chemical reaction
in the system. This dependence is characterized by a significant upward devia-
tion of these quantities from the values for systems without chemical reaction
(ε*  ∞ , εL  0) with diminishing ε* or growing εL.

It is interesting to observe that for the line-of-centers model (see Eq. (5))
Shizgal [18] analyzed the influence of nonequilibrium effects on the rate of time
derivative of temperature of reacting component. This author shows that for ε* di-
minishing from 2 to 1, i.e. in the region in which the largest effects of the chemical
reaction on the energy relaxation obtained from the Maxwellian velocity distribu-
tion function (see Figs. 2-4), the role of nonequilibrium effects is relatively small.
However, a direct comparison of our results with those from Ref. [18] is impossible
because of the differences discussed in Appendix.

Let us observe that we include the effect of chemical reaction on the trans-
lational energy relaxation in an implicit way only, i.e. by excluding the collisions
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with parameters leading, according to the molecular models (Eqs. (3)-(9)), to the
chemical reaction.

We would like to emphasize that the neglecting of the influence of the chem-
ical reaction on the velocity distribution during a time of the order of τ seems to
be somewhat artificial if τch is not large enough in comparison to τ. In other cases
(i.e. for small ε* and large εL) our model realized in calculations and in simulations
seems to be realistic for the beginning of the translational energy equilibration. In
a more general treatment a disappearance of particles A after reactive collisions
should be taken into account.

Neglecting of products and changes in the velocity distribution of particles
B seems to be a good approximation in all cases in which the concentration of
particles A is sufficiently small.

The influence of the chemical reaction on the velocity distribution and a pos-
sible change of the relaxation time connected with this effect should be examined
in another model system. We hope to do such simulations for the fast reactions in
future. However, this problem must be treated with another simulation scheme in
which the heat bath particles do not occur explicitly in order to be able to deal
with large particle numbers of the sort A. Otherwise the statistics would become
too poor when a great part of the particles A disappears.

It is also interesting to discuss in some details comparison between results
for the line-of-centers model and the modifled line-of-centers model. The original
line-of-centers model expressed by Eq. (5) was used by many authors for calcula-
tion of nonequilibrium corrections to the rate of chemical reactions in dilute gases
(see e.g. Refs. [9] and [45] and publications cited therein). However, we believe
that the essential physical idea of this model is expressed in a more fundamen-
tal way by Eq. (6) which we call the modified line-of-centers model. In fact both
the models expressed by Eqs. (5) and (6) lead to the same formula for the rate
of chemical reaction (1) in dilute gases. This does not necessarily mean that both
above-mentioned models are equivalent. For example, both analytical and numeri-
cal results for the translational energy relaxation time for the LC and mLC models
displayed in Fig. 2 produced a markedly different behavior for these models. The
difference between these models is the most pronounced for the elastic collision
number Zel which, as it can be seen from Fig. 5, increases to infinity with ε*  0
for the mLC model only.

6. Discussion

A description of the problem of relaxation of translational energy in dilute
chemically non-reactive gases was suggested by Dahler and coworkers [2, 3] and
by Malkin [1]. It can be observed that the equivalent result8 were obtained also by
Shizgal [13]. We suggest in this paper how to generalize this approach to the case of
dilute gas with chemical reaction using an idea analogous to the generalization of
the Boltzmann equation suggested by Prigogine and coworkers [7, 8] for systems
with chemical reactions. Expressions for the relaxation time (see Eq. (19)) and
the collision numbers (see Eqs. (23)-(25)) were obtained in this way for various
molecular models of chemical reactions (see Eqs. (3)—(9)). In order to verify this
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idea we have calculated these quantities from analytical expressions characterizing
the energy relaxation in a dilute gas (see Eqs. (47) and (55), (57) and (65)) and
compared them with the results obtained from the modifled Nambu-Babovsky
method [5, 6] of numerical simulations of the solution of the appropriate Boltz-
mann equation. Comparison of the analytical theory (Eqs. (41)—(72)) and results
of numerical simulations lead to the following conclusions:

(a) There is very good agreement between the analytical theory and numer-
ical simulations for all models of chemical reaction considered in this paper (see
Eqs. (3)-(9)). This conclusion strongly supports our conviction that Eq. (19) is a
reasonable extension of the description of translational energy relaxation process
due to Dahler and others [2, 3] and Malkin [1] to the case of a dilute gas with chem-
ical reaction (1). We think that the analytical expressions for translational energy
relaxation time (see Eq. (47)), as well as for the total (see Eq. (55)), elastic (see
Eq. (57)) and reactive (see Eq. (65)) collision numbers obtained from Eq. (19) with
the use of appropriate reactive collision probabilities maybe used to understand
better the behavior of these quantities in real systems with chemical reactions.

(b) Application of the modifled line-of-centers model mLC (see Eq. (6)) for
analysis of the energy relaxation process leads to qualitatively different results (see
Fig. 5) than those obtained with the line-of-centers model LC (see Eq. (5)).

(c) The chemical reaction (1) can very strongly influence the translational
energy relaxation, especially in cases of small ε* or large εL which corresponds
to the situation when a large portion of scattering events in the system leads to
the chemical reaction. This conclusion is easy to be understood from the point
of view of irreversible thermodynamics. A detailed discussion of chemical reaction
and relaxation phenomena presented, for example, by De Groot and Mazur [22]
indicates that these processes have a very similar nature and strong interaction
between them can be expected.

Appendix

The basic equation of our theory (Eq. (19)) was introduced in Sec. 3 in an
intuitive way. It would be instuctive to derive this equation from the Boltzmann
equation. The Boltzmann equation according to Eq. (1) and inequality (2) can be
written in the form introduced by Prigogine and Xhrouet [7]

where f'A and fB(0)' denote the velocity distribution functions after collision. Mul-
tiplying both sides of Eq. (Al) by mΑc2A/2, integrating over cA and taking into
account that
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we obtain

The first term on the right hand side of Eq. (Α3) denotes the process of equilibration
of energies due to elastic collisions in the system. The second term on this side of
Eq. (Α3) is connected with the energetic effect of the chemical reaction (1) and
can be also written in the form [7]

where Δε is the energetic effect of chemical reaction. We have taken into account
that due to inequality (2)

where (∂ fB /∂t) ch denotes the change of the distribution function of the component
B due to the chemical reaction (1). If we neglect the energetic effect of the reaction
(1) and put

and approximate fA in Eq. (Α3) by the Maxwell-Boltzmann distribution

we can obtain Eq. (19) using Eqs. (12) and (13). Thus, we see that our intuitive
result in the form of Eq. (19) can be obtained directly from the Boltzmann equa-
tion if we focus on the relaxation mechanism due to the elastic collisions in the
system and neglect the energetic effects of the chemical reaction and deviations
from the Maxwell-Boltzmann distribution due to this reaction. Doing this we ob-
tain a simple description of the energy relaxation in the system with chemical
reaction in the traditional form similar to Eq. (14) which allows easily to define
the relaxation time τ. Comparison of this theory with numerical solution of the
Boltzmann equation with the Nanbu-Babovsky method leads to the conclusion
that our approach can be fairly accurate in many situations. It should be pointed
out that calculations of the energy (or temperature) relaxation in systems with
chemical reactions presented in many papers by Shizgal and coworkers [12-14, 18,
20, 21] were based, in contrast to our approach, on Eq. (Α3) with the second term
on the right hand side included. In consequence these authors did not consider the
relaxation process defined by Eq. (10) and the following Eqs. (12), (13), and (19).
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