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A unified description of confined optical LO, TO and interface phonons
is given on the basis of vector "ghost" fields defined in the whole space. These
fields are characterized by the relations for longitudinal and transversal fields.
Real displacement fields are obtained by introducing confinement conditions.
Interface charges and vortices appear due to this procedure.
PACS numbers: 73.20.Dx

1. Introduction

Optical phonon modes in quantum wells (QW) and superlattices (SL) have
been calculated by several authors [1-13] on the basis of classical theory of phonon
modes for bulk materials and the electrodynamics. The equation of motion is

where u , E, and M are the mechanical displacement field, the long-range electric
field and the reduced mass of the unit cell, respectively. Equation (1) has to be
solved using the boundary conditions for E and the dielectric displacement field D
at the interfaces of the QW and the SL. Mechanical and electric fields are related
additionally by

The polarization field and the density of unit cells are denoted by P and N,
respectively. Neglecting retardation effects one obtains

i.e., the electric field is purely longitudinal. It follows from equation of motion (1)
that u may have a transversal component.

Equation (1) has been generalized by Barbiker [14] by including additional
terms which describe long-range mechanical forces being connected with the x-de-
pendence of u:

(919)
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Equation (1) can be derived immediately from (4) by assuming

The difference between (1) and (4) is striking. From an equation of type (1) inter-
face modes (IF) can be derived, whereas Eq. (4) gives confined bulk modes (CB)
as solutions after introducing confinement conditions. Relations (5) and (6) may
be considered as criteria for the structure of IF mechanical displacement fields.
Moreover, (5) and (6) may be the starting point for the calculation of the mechan-
ical displacement fields without invoking electrodynamical boundary conditions.
Then, it seems to be quite naturally to define the displacement fields of CB modes
by relations of the same type:

Using (7) and (8) the equation of motion (4) is specialized for longitudinal and
transversal CB modes, respectively.

Definitions (5) to (8) are independent of the geometrical form of the inter-
face separating different materials. They can be assumed to be valid for QW, SL
or quantum wires. Furthermore, it can be shown that the u fields derived from
relations (5) to (8) give together with the equation of motion such fields E and D
which are consistent with the electrodynamical boundary conditions.

2. Interface modes

2.1. Planar interfaces (QW and SL)

For planar interfaces the operation grad, div and rot are used in cartesian
coordinate systems. Assuming a single interface between two different materials
the relations (5) and (6) are fulfilled by the vector fields

where q is the wave vector parallel to the interface which is assumed to be local-
ized at z = 0. Expressions (9) and (10) are divergent for z →∞ and z →∞ ,
respectively. Therefore, we cannot identify (9) and (10) with the real displace-
ment fields. The real field can be defined by introducing confinement conditions
which restrict the existence of the fields to that halfspace where they remain finite.
Consequently, in contrast to the real fields (9) and (10) are qualified as "ghost"
fields and will be denoted by u' in the following. If the left halfspace is empty, the
polarization field is given by

According to (2) the "ghost" field P' is defined by
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fulfilling the conditions

Using (11) and the relations

the fields E, D and P of an interface mode travelling in the right halfspace can
be calculated. One obtains

Polarization charges exist at the interface at z = 0 and do not appear in the bulk.
This follows from

Sources and vortices appear together, but only at the interface. The IF modes are
neither longitudinal nor transversal. The boundary conditions of the electrody-
namic are fulfilled by (15) to (17).

2.2. Quantum wires

Recently, the procedure discussed in Sec. 2.1 has been used in order to derive
IF modes of a quantum wire [15]. Assuming (5) and (6), it is readily seen that one
can make the ansatz

obtaining with the help of (5)

where the Laplace operator is given in cylindrical coordinates. The solutions of
(21) are the modifled Bessel functions Im (kr) and Km (rk), giving the wire "ghost"
fields.

3. Dispersion relations

The dispersion relations of IF modes of a halfspace, the double heterostuc-
ture (DHS) and the SL can be expressed in the unified form

The function η(q, k) depends on the components of the wave vector Q = (q, k)
parallel and perpendicular to the interface. It holds: n = 0 for the halfspace,
n = ± exp(—qd) for the DHS and

for the SL.
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4. Confined bulk modes

4.1. Symmetric modes

Repeating the same procedure as in Sec. 2.1 concerning relations (7) and (8)
we obtain the CB mode "ghost" fields

eq and ez are the unit vectors parallel and perpendicular to the interface, respec-
tively. Assuming (24) as a longitudinal and (25) as a transversal mode we obtain
from relation divu'4 = 0:

Relation (26) can be fulfilled with the ansatz

which gives

Real polarization fields are now introduced by applying the confinement conditions

with Λ(z) = Θ(z + α/2) - Θ(z - α/2), α being the layer thickness. The values of
(30) are not completely determined by (28) and (29). The symmetry of the DHS
or the SL allows two different choices of the z-component of ι' at the interfaces:

4.2. Antisymmetric modes

Repeating the procedure of the Sec. 4.1 the sin- and cos-functions change
their places in the expression for the displacement field and another prefaction
appear.
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5. Nonuniqueness of the potentials

Relations (7) and (8) do not determine the real fields unambiguously because
we can add a gradient to Λ(z)u' and rot u = 0 remains valid, i.e.

and divu = 0 holds also for a field

It follows from (7) and (35)

Choosing the potential so that

is valid, a compensation of the interface sources in (37) would appear. This com-
pensation plays a role in case (b) if the longitudinal CB mode has a source-like
IF contribution. In the case (a) the modes would not have a source-like but a
vortex-like IF contribution which is in disagreement with the classification of the
modes and cannot be compensated by means of potentials.

By choosing ΔΦ = 0 there is no compensation in (37). Now, the longitudinal
CB mode has a source-like IF contribution in the case (b) and a vortex-like IF
contribution in the case (a). The discontinuity of one of the components of the
fields (28) and (29) (either the x-, y- or the z-component) cannot be removed at
all, if one describes the fields by functions of cos λz or sin λz type.
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