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PHYSICS OF RESONANT TUNNELLING

F.W. SHEARD AND T.M. FROMHOLD

Department of Physics, University of Nottingham, Nottingham NG7 2RD, England

A description is given of resonant tunnelling processes in double-barrier
semiconductor heterostructures from the point of view of sequential the-
ory. If a magnetic field is applied in the plane of the barrier interfaces, the
energy and transverse momentum of the electrons injected into the quan-
tum well through the emitter tunnel barrier can be varied independently
by changing the applied voltage and magnetic field. This technique can be
used to probe the energy and momentum spectrum of the subband states in
a quantum well. In n-type wide-well structures, a detailed interpretation of
niagneto-oscillations in the tunne1 current has been given in terms of semi-
classical orbits of electrons in the well. In p-type structures with narrow
wells, the dispersion curves of hole subbands, which are complicated by the
strong mixing of light hole and heavy hole states, have been directly studied.
Resonant tunnelling into the bound state of single donor atks in a quantum
well has recently been observed. The magnetic field dependence of the tunnel
current then gives a measure of the transverse momentum distribution and
hence lateral extent of the donor wave function.

PACS numbers: 73.20.Dx

1. Introduction

Tunnelling through a potential barrier is a basic feature of quantum me-
chanics since it is a manifestation of the wave nature of matter. The description
of alpha particle emission by radioactive nuclei is an earhy success of tunnelling
theory. But in nuclear physics it is difficult to directly influence the tunnel process
since the energy barriers are very high ( ≈10 MeV) and very narrow (≈10-14m).
In semiconductor heterostuctures the barriers are much lower ( ≈100 meV) and
wider (10 nm) so that the tunnel process can be studied by means of the effect
of external fields. An electric field, applied parallel to the tunnelling direction, can
be used to change the kinetic energy of a tunnelling electron, whilst a magnetic
field, applied perpendicular to the tunnelling direction, changes the direction or
transverse momentum of a tunnelling electron.

Resonant tunnelling is of particular interest [1]. In this case an electron tun-
nels through two barriers between which there is a quantum well (QW) which
supports a quasibound state. When the energy of the incident electron coincides
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with that of the quasibound state the transmission coefficient has a resonant max-
imum. Under an external bias voltage the quasibound state is lowered through
the range of incident energies giving a resonant peak in the current-voltage 1(V)
characteristics (Fig. 1). The associated region of negative differential resistance
in the 1(V) curve gives rise to the possibility of using such resonant tunnelling
double-barrier stuctures (DBS,s) in electronic devices [2].

To minimise scattering effects due to dopant diffusion, double-barrier het-
erostructures are often grown with weakly doped ( 10 16 cm- 3 for GaAs) emit-
ter and collector contacts and may also have undoped spacer layers adjacent to
the barriers. Under bias an accumulation layer and bound state is formed at
the emitter barrier interface and, at liquid helium temperatures, the associated
twodimensional electron gas (2DEG) is degenerate. Tunnelling then occurs be-
tween 2D emitter states into the 2D states of the subband in the QW, as shown
in Fig. 1. For plane interfaces, the transverse components of momenta, and hence
transverse kinetic energy, are conserved in tunnelling. Since total energy is also
conserved the resonant condition is achieved when the energy Ea of the bound
state in the accumulation layer is equal to the energy Ε w of the bound state in
the quantum well. At low temperatures this gives rise to a sharp resonant peak
in 1(V) (see inset in Fig. 1), although there are of course finite level broadening
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effects [3] due to scattering processes or structural inhomogeneities.
For the interpretation of experiments it is instuctive to think of resonant

tunnelling as a sequential two-stage process [4]. The electrons first tunnel from the
emitter into the bound state of the QW and, owing to scattering processes, lose
phase coherence before tunnelling out through the collector barrier. The tunnelling
in and tunnelling out processes are regarded as statistically independent transi-
tions. As pointed out by Luryi [4], the resonant feature is retained in the sequential
approach since the transition through the emitter barrier requires coincidence of
the incident electron energy with the energy of the bound state in the QW.

In this review we shall be principally concerned with the effect of a transverse
magnetic field (parallel to the barrier interfaces) on the tunnel current. This has
proved to be a useful spectroscopic tool for studying the energy and momentum
spectum of states in a QW and also the way in which these states are modified
by electric and magnetic fields.

2. Effect of magnetic field on electronic motion

The basic principles are most simply elucidated semiclassically [5]. Taking
the x axis to be the tunnelling direction (perpendicular to the interfaces) and
the transverse magnetic field Β along the z direction, the equation of motion of
the transverse momentum component m υ, of an electron (effective mass m*,
charge -e) is

In the Landau eau e, the vector potential is A = (0, Bx, 0), so Eq. (1) gives

showing that the canonical momentum component py is a constant of the motion
(as also is pz = m* υz ). In quantum mechanics the wave function ψ(x, y , z) is an
eigenfunction of canonical momentum operation py , pz with eigenvalues ħky , ħkz
and can be written

where ψ(x) describes motion in the tunnelling direction and the wave vection ky ,
k,z are conserved throughout the stucture.

The magnetic field also gives rise to a force in the tunnelling direction

which can be written as the gradient of a simple harmonic potential Um (x) =
1/(2m*)ω2c(χ - Χ)2, whereω = eB/m*andΧ = -ħky/eBis the orbit centre of

the classical trajectory in the magnetic field. The wave function ψ(x) is hence de-
termined by a one dimensional Schrodinger equation which contains the magnetic
potential Um (x) and also the heterostructure potential energy function Ε(x) of
an electron at the conduction band edge. In a bulk semiconductor with Ε(x) =
const., we have simple harmonic oscillator eigenfunctions ψ(x) (n = 0, 1, 2..) and
the eigenvalues are the well-known Landau levels Εn = (n + 1/2)ħωc.
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3. Resonant tunnelling in narrow -well double -barrier structures

In a DBS with narrow well (width <10 nm) the effect of a transverse mag-
netic ffeld is to broaden the resonant peak in I(V) and shift it to higher voltages
[6]. This is shown in Fig. 2 for an asymmetric GaΑs/Al0. 4Ga0.6Αs structure with
6 nm QW, a thick emitter barrier (11 nm) and thin collector barrier (8 nm). Shifts

of the resonance due to electronic charge buildup in the QW can then be neglected
and the resonant peak is very narrow [7]. In this case the magnetic potential is
only a small perturbation on the subband states of the emitter 2DEG and QW.
The energy of a state (k y , kz ) in the QW is then

where Ew is the subband energy, ΔΕ the diamagnetic shift (< 1 meV for B
12 Τ in narrow-well DBS) and ħkw = eΒ(x)w. The last term is the in-plane kinetic
energy which is essentially 1/(2m*)υ2y, with m*υy = ħky + eB(x)w when averaged
over the subband wave function ψw (x). A similar result follows for the emitter
2DEG state with (ky , kz ):

where ħka = eB(x) a is averaged over the emitter bound state ψa (x). Since the
width of the accumulation layer in GaAs is 10 nm, the diamagnetic shift is
again small. Thus the effect of the magnetic field is to give a relative momentum
shift of the dispersion curves (5) and (6) by ħk 0 = ħ(kw - ka) = eΒΔs, where
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Δs = (x)w - (x) a is the mean distance between 2D electrons in the accumulation
layer and QW. Physically this is due to the action of the Lorentz force as the
electron traverses the emitter tunnel barrier.

In Fig. 3 we have drawn the dispersion curves of the emitter and QW states
(choosing (x),,, = Ο for simplicity). The emitter dispersion curve has only been
drawn for the occupied states -kF < ky - k 0 < kF, where kF is the Fermi wave
vector of the degenerate 2DEG. Since energy and transverse momentum are con-

served, tunnelling can only occur for those states at the intersection points of the
two curves. For Β = Ο (Fig. 3a), this occurs for all occupied emitter states when
Ea = Εw , giving rise to a sharp peak in I(V). From Fig. 1 the voltage drop V1 be-
tween emitter contact and well centre is then given by eV1 = Ε w + EF. For B ψ Ο
(Fig. 3b) resonant tunnelling occurs over a range of biases which broadens the
peak. The peak position corresponds roughly to the intersection at k y = k0, when
Ea = Εw + ħ 2 k20/(2m*) and hence eV1 = Εw + EF + (eΒΔs) 2 /(2m*). Assuming
the applied voltage V α V1 over a small range, this predicts a voltage shift of the
peak Β 2 in agreement with experiments [7-9].

Although detailed calculations of the I(V) curves have not been carried out
(owing to the uncertain effects of broadening processes), the qualitative picture is
clear. Electrons in the accumulation layer with a well-defined range of transverse
momenta, tunnel through the emitter barrier and are injected into the QW with
a momentum distribution shifted by the magnetic field. Since their kinetic energy
in the well is tuned by the applied voltage, the tunnelling electrons can be used
as a spectroscopic probe of the energy and momentum spectum of the states in
the QW. We now discuss the application of this technique to investigate magne-
toelectric states in wide wells, hole states in p-type structures and single impurity
states in QW's.
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4. Resonant tunnelling in wide-well double-barrier structures

Experiments on stuctures with wide wells (width ω ≈100 nm) show series
of closely-spaced, weak resonances [10]. This is expected since the level separation
between QW subband decreases and the probability of scattering in the well in-
creases width ω. These structures are interesting because the character of the QW
states can be substantially modifled by a transverse magnetic field. At low fields
they are traversing states in which an electron bounces back and forth between the
confining barriers, but at high fields, witl increasing orbit curvature, they become
skipping states in which an electron bounces (skips) along a single interface (see
insets in Fig. 6). Experimentally, the changing stucture of the QW states is most
clearly seen in the amplitudes of the magneto-oscillations in the second derivative
plot of d2 I/dΒ 2 versus B for fixed bias voltage. In Fig. 4, three series of oscillations
with different periodicities can be distinguished and the changeover from travers-
ing to skipping states is revealed as a region of much reduced magneto-oscillation
amplitude. It is significant that the tunnel current is reduced to zero at very high
magnetic fields.

The spatial variation of electron potential energy Ε(x) is shown in Fig. 5
for the stucture with 120 nm well described in Ref. [9]. We have modelled the
accumulation layer using the Fang—Howard variational wave function. Owing to
the electric field in the well, the injected electrons may attain kinetic energies  -
of several hundred meV so it is important to take account of nonparabolicity in
describing the electronic states. In a transverse magnetic field the classical orbits
are cycloids, which may interact with either or both barrier interfaces. We have
calculated the dispersion curves Ε(k) for these states in the WKB approximation
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[10]. In Fig. 6, region s corresponds to emitter-bound skipping states, region t to
traversing states. Regions q and r (collector-bound and bulk states) are inaccessible
to electron tunnelling from the emitter 2DEG. The parabolic dispersion curve of
the occupied 2DEG states is centred on ky = k0 = eB(b + 3α)/ħ, where b is the
barrier width and 3α the offset distance of the 2DEG from the barrier interface.
Here, the origin of coordinates is at the right hand side of the emitter barrier
so that ħky has the physical interpretation of the transverse momentum of an
electron as it emerges from the tunnel barrier (from Eq. (2), p y = m*υy when
x = 0). Energy and momentum conservation then defines the allowed tunnelling
channels by the intersection points k y = ky (n) for the 2DEG and QW dispersion
curves. With increasing Β the opening of a channel when k(n) = k 0 + kF and
closure when ky (n) = k0 - kF gives rise to changes of slope in the 1(Β) dependence
which produce the pronounced magnetooscillations in the d 2 I/dB 2 versus Β plot.

However, to account for the distinctive features of the oscillation amplitudes
it is necessary to calculate the field dependence of the tunnel current I [11]. We
use the sequential tunnelling approach described previously and write

where Μ(k) is the Bardeen transfer matrix element [11] and fa , f" are the
occupancies of the 2DEG and QW states. For fa we use a zerotemperature
Fermi-Dirac distribution function since the degenerate 2DEG is maintained close
to equilibrium by rapid diffusion through the emitter contact. In wide-well stuc-
tures charge buildup in the QW is expected to be small (f`v = 0) since the collector
barrier is much more transparent than the emitter barrier. We note also that when
the electrons tunnel into skipping states confined against the emitter barrier, scat-
tering processes are essential to maintain current continuity through the stucture.
In Eq. (7) the integration over ky is accomplished using the conservation of energy
condition δ(ΔΕ) = 0, where ΔΕ is the energy difference between an emitter 2D
state and cycloidal QW state with the same k y and kz . The tunnel current is then
the sum of contributions In due to each conduction channel,

Using "'KB states for the emitter bound state ψa and QW states ΨΡn, we have
shown that [11, 131

where Fa is the attempt rate (number of collisions per second with the emitter
barrier) of a 2DEG electron and Τ(k) is the emitter barrier transmission coef-
ficient, which depends on ky via the influence of the magnetic potential on the
tunnel barrier. For an electron in the n-th QW state the attempt rate F(k) is
given by
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where υn (k y , x) is the local velocity and the integral is over the classical orbit
between successive collisions with the emitter barrier.

The calculated current contributions Ι n(Β) are shown in Fig. 7 for a 120 nm
well structure with 5.6 nm barriers. To simulate broadening effects we have aver-
aged the total current over a small range of Β. The d2I/dB2 plot thus obtained
shows three distinct series of oscillations as found experimentally. Tle low field
t + /t- series originate from the opening/closure of traversing state channels. The
high field s- series is due to tunnelling of -kF electrons into emitter-bound cy-
cloidal skipping states. The periodicities of these series are quite well described by

our nonparabolic WKB approximation but the presence of weak s+ oscillations,
not seen experimentally, indicates the limitations of the model in determining the
energy spectum for low quantum numbers n.

The changeover from traversing to skipping state resonances is characterised
by a reduction in the current contributions I, and hence in reduced oscillation am-
plitudes in d2I/dB2. This behaviour has a direct physical interpretation in terms
of the field dependence of the attempt rate F(k) of an electron in a QW state
as shown in Fig. 8. For traversing states, as P increases, the increasing orbit
curvature increases the path length and time interval between collisions with the
well walls. This decreases Fn and also the oscillatory amplitudes. By contrast, for
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skipping states, as B increases the electron orbit is pulled closer to the emitter bar-
rier interface. This shortens the distance between successive skips which increases
the attempt rate and hence oscillatory amplitudes. At very high Β the electrons are
deflected back into the emitter before they can escape into the well so the current is
reduced to zero. The longest trajectories in the well and hence lowest attempt rate
Fm in 2 x 10 12 s-1 , occur in the changeover region when the electron impinges at
grazing incidence on the collector barrier interface. The current contributions are
then small and also level broadening is more important since Fm in is comparable
to the LO phonon emission rate in GaAs. Thus the magneto-oscillations are weak
and poorly resolved as observed.

For the thin barriers (5.6 nm) used in this study the effect of the magnetic
field on the transmission coefficient Τ(k) is small. For wider barriers the field
dependence of the tunnelling probability can have dramatic effects as found in a
previous study of skipping states in single-barrier stuctures [13, 14].

5. Resonant tunnelling of holes in p-type narrow-well double-barrier
structures

Resonant tunnelling of holes has been observed in GaAs/AlAs double-barrier
structures with p-type contact layers. Figure 9a shows recent experimental results
[15] for a stucture with 4.2 nm QW grown on (100) planes, in which six resonances
are clearly visible. The variation of hole potential energy through the stucture
is given schematically in Fig. 9b. More resonances are observed than in similar
n-type structures because there are QW subbands associated with heavy holes
(IIH's) and light holes (LH's), both of which have rather larger effective masses
than conduction electrons in GaAs. Also the voltage shifts of the hole resonant
peaks in a transverse magnetic field behave quite differently to their electronic



Physics of Resonant Tunnelling 	 533

counterparts. As can be seen in Fig. 9a, some peaks shift very little while others
shift in opposite directions.

In the electronic case the quadratic voltage shift with field B is due to the
parabolic dispersion of the QW subband states in the effective-mass approxima-
tion. The in-plane dispersion curves of hole subbands are more complicated due to
the mixing of HH and LH states [16]. These are decoupled in the bulk semiconduc-
tor but coupled in a heterostructure due to the confining QW potential, except at
ky = k z = 0. In Fig. 9b the subbands are labelled according to their character at
ky = kz = 0. Despite these complications the basic principles elucidated in Sec. 2
still apply (with change of -e to e). In lowest-order perturbation theory the effect
of the magnetic field is to replace py by ħky - eB(x)w . If the QW is symmetric
the mean hole position is in the middle of the QW as in the electronic case. Owing
to the more complicated hole Hamiltonian [17], the diamagnetic shifts are wave
vector dependent but are still small (s: 0.5 meV) even at the large fields used
experimentally (B 26 T).

Thus the voltage and field positions of the resonant peak positions, plotted
in Fig. 10a, give a map of the dispersion curves of the hole subbands and reveals
the large nonparabolicity and regions with negative in-plane effective mass. As
shown in Fig. 9b tunnelling takes place from the HH states of a 2DHG in the
emitter. The B scale of Fig. 10a may therefore be converted to a momentum scale
using ky = k 0 = eBΔs/ħ, Δs = λ + b + 1/2ω, where λ is the offset distance of
the emitter 2DHG from the barrier of width b. Using λ = 5 nm and b = 5.1 nm
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the upper scale of Fig. 10a is obtained. For the same range of ky the in-plane
dispersion curves have been calculated [15] from the Luttinger Hamiltonian [17]
and are shown in Fig. 10b. It can be seen that the theoretical curves reproduce
qualitatively all the main features of the experimental results. To scale the applied
voltage V to the subband energies requires a band bending model in which there
are uncertainties due to dopant diffusion and the effect of charge buildup in the
QW at resonance. Estimates [15] give scale factors ti 3 at 1 V and 5 at 3 V in
broad agreement with experimental results.

Further work [18], in which the charge buildup in the QE was directly mea-
sured (from magneto-oscillation with Β perpendicular to the layers), have provided
a more accurate scaling of the applied voltage to the hole energy. By rotating the
magnetic field in the (100) plane of the QW, small cubic anisotropy effects were
also found in the hole dispersion curves. More dramatic anisotropy effects have
been found in resonant magneto-tunnelling studies of the hole subbands of strained

Si/Si1-xGexQWs [19] and in GaAs/AIAs QWs grown on (311)A substrates [20].

6. Resonant tunnelling into isolated donor states in a quantum well

Recent experiments on a DBS with small cross-sectional area ( ≈0.5 µm2)
have shown very weak peaks in the I(V) curves at voltages well below the main
resonant peak for tunnelling into the lowest QW subband (Fig. 11). It has been
proposed that these are due to resonant tunnelling into the localized bound states
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of a small number of donor impurities in the nominally undoped QW [21]. We now
consider what information the magnetotunnelling technique will provide in this
situation [22].

For tunnelling into a localized donor state, the transverse components of
momentum ky , k,z are not conserved. Energy conservation then shows that tun-
nelling only occurs for the small range of bias voltages for which the donor level lies
within the energy range of occupied 2D states in the emitter accumulation layer.
At a particular bias the kinetic energy of the resonant 2D states is (from Fig. 11
and Fig. 1) Ε = Εw — ED - Ea , where ED is the donor binding energy below
the subband minimum at Ε. Taking a separable form φ(y , z)X(x) for the donor
wave function [23], the Bardeen matrix element will contain an overlap integral
(evaluated in the tunnel barrier),

between the emitter plane-wave state (ky , kz) and the lateral donor wave func-
tion. The tunnelling rate is proportional to the momentum probability distribution
function P(ky , kz ) = |S(ky , kz)|2.
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In a transverse magnetic field, owing to the action of the Lorentz force, the
required momentum distribution becomes Ρ(ky + k0,  kz ), which is shifted by k 0 =
eΒΔs/ħ, where Δs is mean distance between emitter 2DEG and donor site. The
field dependence of the tunnel current Ι(B) is obtained by averaging over values of
ky , kz which satisfy the energy conservation condition ky + k2z = k2c = 2m*Εc/ħ2.
This gives

The integral may be evaluated numerically for various model wave functions. How-
ever, if the lateral width Δx of the donor wave function obeys kcΔx « 1, it is
clear that I(B) Ρ(k0,0). In this case the fjeld dependenceI(B)gives directly
the spatial Fourier transform and hence spatial width of the localized donor state,
provided that the donor wave function is not appreciably perturbed by the mag-
netic field. For a Gaussian model wave function ((y, z) exp[-(y 2 + z 2 )/2α20  ],
with width parameter α0, I(Β) exp(—k20α20), so the impurity peak is suppressed
for a sufficiently large field. This effect has been observed in more recent experi-
ments on resonant tunnelling stuctures in which the QW is weakly delta doped
in the centre [24].

7. Conclusion

We have described how magnetotunnelling in a transverse field is a remark-
able tool for the study of excitations in semiconductor heterostuctures. In contrast
to other techniques, such as optical measurements, it directly probes states with
specrfic in-plane k values and, by rotating the magnetic field, the anisotropy be-
tween different crystal directions is revealed. By using very high magnetic fields
(40 T) k values 10 7 cm-1 have been reached, so a substantial part of the Bril-
louin zone is available for study.

Unfortunately, this technique is not available in other areas of solid-state
physics in which tunnelling is important such as the scanning tunnelling micro-
scope and normal metal or superconducting tunnel junctions. It is only in semicon-
ductor heterostuctures prepared by modern growth techniques that such perfect
surfaces are achieved that transverse momentum is conserved, and where suffi-
ciently wide and low tunnel barriers are available to give a large momentum shift
without reducing the tunnel current to a negligible level. We should be grateful
for these features and seek to exploit them further.
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