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Singular surface theory is applied to study the growth and decay prop-
erties of weak magnetogasdynamic discontinuities under the intluences of
thermal conduction and the time-dependent radiation field interacting with
magnetogasdynamic field with finite electrical conductivity. It is shown that
the time-dependent radiation field gives rise to a radiation induced weak
wave which is always damped and the magnetogasdynamic waves which
break at the wave front if the initial discontinuity is sufficiently strong. The
wave front curvature effects on the weak magnetogasdynamic waves are also
discussed.
PACS numbers: 47.40.Nm

1. Introduction

With the advancement of space technology the propagation of waves in
gaseous media at very high temperature and at low density becomes an inter-
esting problem in determining the flow field. In such situations we can not justify
the neglect of the effects of thermal radiation, thermal conduction and electromag-
netism. These effects require a study of a complicated interaction among the radi-
ation field, the electromagnetic field and the gasdynamic field simultaneously. The
inclusion of radiation makes the fundamental gasdynamic relationships a complex
set of nonlinear integrodifferential equations when accounting for the frequency
dependence of the radiation field. Such a situation arises when a solar wind of
fully ionized plasma interacts with a plasma column of Earth,s atmosphere and
compresses it. As a result of interaction, weak wave characteristics emerge and
with changing inclinations, they intersect to form a shock wave.
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Since, at high temperatures, a gas is likely to be fully or partially ionized,
the electromagnetic effects may play a decisive role in the determination of the
flow field. One is thus led to study the interaction of radiative and electromagnetic
effects arising in the problems of solar photosphere, rocket re-entry and elsewhere.
Also at high temperatures, it is more realistic to consider the contribution of the
thermal conduction effects along with the radiation and the magnetic field with
finite electrical conductivity in a gaseous flow field. These ideas give some insight
into interactions of various mechanisms participating in the wave propagation.

Thomas [1] introduced the singular surface theory to study the propagation
of weak waves in an ideal gas flow. Several authors [2-5] further generalized and
developed the singular surface theory to cover up some complicated cases of real
gases. Nariboli and Secrest [6] extended the analysis of Thomas to magnetogasdy-
namic flows with finite electrical conductivity. During the last two decades several
investigation [7-10] studied thermal radiation effects on the propagation of small
disturbances in gas flows under steady state conditions. The growth and decay
properties of the weak waves in radiation gasdynamics have been discussed by
Srinivasan and Ram [11], Ram [12], Ram and Pandey [13]. Shankar and Prasad
[14] have extended the paper [11] taking into account the unsteady motion ahead

• of the wave surface. In the above studies, the approximation to the radiative heat
transfer equation is too strong and the gas is assumed optically thin or thick.
Most of the authors [7-15] have neglected the time dependence in the radiative
heat transfer equations. The neglect of the time derivative of the radiation field
amounts to the suppression of one mode of wave propagation excited by radiation
and, therefore, the exact behaviour of waves in radiation gasdynamics is not fully
understood.

Alter incorporating the idea of the time-dependent radiation field, the gov-
erning equations clearly show tle existence of radiation induced waves. The object
of the present work is to obtain the growth equation which will govern the growth
and decay of weak magnetogasdynamic waves taking into account the effects of
thermal conduction and the time-dependent radiation field interacting with the
magnetogasdynamic field with finite electrical conductivity. The study of the ef-
fect of thermal radiation is based on the differential approximation [16] of the
radiative heat transfer equation. The influences of the thermal radiation, ther-
mal conduction, the magnetic field and that of the initial wave front curvature
are discussed on the nonlinear breaking of modified magnetogasdynamic (MGD)
waves.

2. Basic equations

The set fo nonlinear differential equations governing three-dimensional flow
of a radiation magnetogasdynamics with ffnite electrical conductivity σ is
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where ui , Πi, p, p, J, R and Τ represent the components of flow velocity, the
components of the magnetic field, the gas pressure, the gas density, the electrical
current density, the universal gas constant and the absolute gas temperature, re-
spectively. E is the total energy per unit volume, pR is the radiation pressure and

qiR is the radiative heat flux vector. The constants γ, K and μ0 represent the heat
exponent of the gas, the coefficient of the thermal conduction and the magnetic
permeability, respectively and t denotes the time. A comma followed by an index
i denotes the partial differentiation with respect to the spatial coordinate xi.

Under the differential approximat i on the equations of radiative heat transfer
may be written as the pair of equations [16]:

where ER = 3R is the radiative energy density per unit volume, α is a grey
absorption coefficient, c is the speed of light and αR is the Stefan-Boltzmann
constant.

The energy equation (3) can be simplified in the form

We assume that there exist a surface of discontinuity S(t) in the flow field,
which is such that the magnetic fleld with the first derivatives and all other flow
variables themselves are continous across it, but the second derivatives of the mag-
netic field and the first derivatives of other variables are discontinuous or undergo
finite jumps. Such a jump discontinuity is defined as a weak MGD discontinuity or
a weak MGD wave. Tle geometric and kinematic compatibility conditions derived
in [17] reduce to
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where Z may be any of the flow variables p, p, ui , Hi, qiR , and pR etc. and the
scalar quantity B = [Ζ , i]ni, B = [Zij]ninj are defined over S(t), G is the normal
speed of the propagation of the surface S(t) and ni are the components of the unit
vector normal to it.

Since the law of conservation of energy holds across a weak MGD disconti-
nuity surface, the energy equation (3) implies that

Forming jumps across S(l) in Eqs. (1), (2), (6), (7) and using (9), we get

where

and the suffix "0" denotes the evalnation just ahead of the propagating wave
surface.

Differentiating Eq. (5c) partially with respect to xi, using (10) and applying
the compatibility conditions (9), we get

Equations (11)-(15) constitute a set of nine equations with nine unknown quantities
λi, εi,ξ , ζ and θ. The system has a nontrivial solution, if G = u0n + α01 or
G = ±c/√3, where α 01 = √p0 /p0 is the isothermal speed of sound. For advancing
wave surface, we shall take G to be positive. We thus find that there are two types
of weak discontinuity surfaces, one of which propagates with an isothermal speed
of sound relative to the gas flow and is defined as a gasdynamic weak wave and the
other one propagates with the velocity c/ √3 and is defined as radiation induced
weak wave.

Taking jump in Eq. (4) again and using (9) we get

• where

From the relations (11) and (16) we obtain

where ψ may be defined as the amplitude of a weak MGD wave. Here li represents
the components of the unit vector in the direction of magnetic fleld.
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3. Behaviour of radiation induced wave

When the first-order discontinuities propagate along the radiation induced
wave S(t), Eqs. (11)-(15), using G = c/i/s yield

where λR = λiRni , εR = εiRni and the superscript R denotes a jump discontinuity
associated with a radiation induced wave.

When Eq. (6) with the help of Eq. (7) differentiated partially with respect to
t and the jumps are taken across S(1), we find, using G = c/ 3 and compatibility
conditions [9], that

Equation (22) is the differential equation governing the growth and decay of a
radiation induced wave. The mean curvature at any point of the wave surface has
the representation [18]:

where (0 and K 0 are, respectively, the mean and Gaussian curvatures of S(t) at
t = 0 and G is the constant speed of propagation of the wave surface.

Equation (22) using (23) can be integrated and yields

where ε0R is the value of εR at t = 0.
It is obvious from Eq. (24) that εR → 0 as t →∞, i.e. the radiation induced

waves are damped and the formation of a front carrying discontinuities in tle
flow variables, is not possible from a continuous flow. It means that the jump
discontinuities in the flow variables decay very fast with time t. Since c is very
large, it follows from (19), (20) and (21) that any disturbance caused by a radiation
induced weak wave has a negligibly small influence on the gasdynamic ffow field.
Thus there is no loss in considering that the undisturbed side of the wave is in
constant state at rest.

4. Behaviour of a MGD weak wave

Now we shall study the behaviour of a weak MGD discontinuity into a
medium which is in a constant state at rest. The jump discontinuities ξ,ζ, λ
and θ, ε are connected by the relation
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When Eqs. (1) and (2) are differentiated partially with respect to xk and
jumps are taken across S(t), we fmd, using compatibility conditions of second
order [9]:

where

Differentiating Eq. (5c) twice partially with respect to xi and applying compati-
bility conditions [9], we find a relation of the form

where

Applying the compatibility conditions (9) and using (26), (29) and (17), we find
that

Differentiating (6) and (7) partially with respect to k, taking the jumps and
applying the compatibility conditions [9], we find that θ = 0. Now eliminating
λ i ni, ς and from (27), (28) and (30) and using (25), we obtain a growth equation
for ψ in the form

where .Ω is the mean curvature of the propagating wave surface.
If ßis the angle between the direction of the magnetic field and that of the

normal to wave front so that lin i = cos ß, the effective term is b20sin2,β, which is
the tangential component. Hence, we have

Since S(t) represents a moving singular surface of a weak MGD wave at any time
ł and G is a constant for a uniform medium at the rest ahead of the wave, we have

Therefore, S(l) will represent a family of parallel surfaces. If r denotes the distance
of S(t) from S(0) measured along the normal to S(0), we can write r = Gli where
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Thus we can write (32) in the form

where

Equation (33) is the required differential equation governing the growth and decay
of weak MOD waves in a radiation induced flow field. Equation (33) using (23)
can be integrated and then it yields

where ψ0 is the value of ψ at t = Ο.
To discuss the physical aspects of Eq. (34), we will consider the two cases of

plane and cylindrical waves, respectively.

4.1. Plane waves

For a plane wave front .Ω 0 = 0 = Κ0 , Eq. (34) yields

where

Equation (35) shows that if ψ 0 > 0 (i.e. an expansion wave front) and Q 0 > 0,
then the denominator of (35) remains positive and ψ = 0 as t →∞. It means that
the wave decays. Also if ψU < 0 (i.e. a compressive wave front) and if it has the
magnitude less than ψ, then the denominator of (35) remains positive and finite
as t →∞, while the numerator tends to zero, i.e. ψ →1 0 as t →∞. It means that
the compressive wave decays and damps out ultimately.

Further, if Ψ 0 = —ψc then ψ = ψ0, i.e. the wave propagates with the initial
discontinuity without any growth or decay. But if ψ0 < 0 and has a magnitude
greater than ψ, then ψ increases without any limit for a finite time t c given by

Thus, when ψ → 0 as t → t c , a compressive wave discontinuity will break down and
a shock type discontinuity will appear spontaneously. The underlying fact is that
as a consequence of exceedingly large gradients the flow parameters themselves
become discontinuous and the flow cannot be maintained without the presence of
a shock wave. From Eq. (36) it follows that ∂lc/∂Qo > 0, i.e. an increase in Q 0
causes an increase in the time l of the breaking on the wave front, so we can
conclude that the effects of thermal radiation through Rp 0 and the magnetic field
with finite electrical conductivity σ are to increase the time of breaking, while the
thermal conduction effect through K is to decrease the time of breaking. Thus
a shock formation is either delayed or disallowed due to thermal radiation and
magnetic field effects. On the other hand, the thermal conduction effect helps in
the breakdown of a weak MGD wave into a shock wave.
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When Q0 < 0, it follows from Eq. (35) that if Ψ0 > 0 when ψ → |ψ c | as
t → ∞, i.e. breaking is not possible at the wave fronts, the wave takes a stable
form. But if ψ0 <O and Q

u0
 < 0, then we have

tc = 1/|Q0| log(1 + |ψc|/|ψ0|)
for the nonlinear breaking of the wave front. Thus in this case a shock-type dis-
continuity will develop at time Τ. Further in this case ∂tc/∂| Q0| < 0, i.e. t^ is
a decreasing function of |Q0|. Thus it is obvious that the thermal radiation and
magnetic field with the finite electrical conductivity with Q0 < 0 are to decrease
the time of breaking of the weak waves, while the effect of thermal conduction
with Q0 < 0is to increase the time of breaking of weak waves into shock waves.

4.2. Cylindrical waves

If the outgoing discontinuity surface is a cylinder of radius R0 at t = t0, then
at any time t > t0 the radius of the cylinder is given by R = R0 + α01t, in this
case Ω0 = -1/2R 0 and K0 = 0 and Eq. (35) reduces to the form

where

is a positive critical value of the initial discontinuity in the sense discussed below
and

is the complementary error function. If Q > 0, the term inside the curly bracket in
the denominator of (37) increases from 0 to 1 as R increases from R to οο. Thus,
if ψ0 > 0 or ψ0 <0 and |ψ0| = ψ^, we have from (37) that ψ → 0 as R →∞, i.e.
the wave decays and damps out, finally. And if Ψ0 < 0 and |ψ0 | = ψέ at time t,
the discontinuity Ι'1 is given by

which shows that a compressive wave will neither terminate into a shock wave
nor completely damp out. By l'Hospital's rule, we get from (39) that ψ→ Q0 as
R →∞, i.e. the compressive wave will assume a stable form. Now if ψ0 < 0 and
|ψ0| > ψ*c, there exists a non-zero fmite time l,* given by

such that |ψ| →∞ as t →  tc. This shows that the nonlinear breaking will occur on
the wave front in a finite time t^, i.e. a compressive wave discontinuity will break
down and a shock type discontinuity will appear. We define ψc* as the critical
value of the initial discontinuity ψ 0 for cylindrical waves. Using the inequality
erfc(x) < exp(-x 2 )/(x√π) it follows from (38) that ψ > Q0 or ψ > ψc, i.e. the
critical value of the initial discontinuity for a cylindrical wave is always greater than



Effect of Conducting and Radiating Gases ... 	 469

that of plane wave. Also we have from (40) that St^/0Q0 > 0 and ∂ t*c/∂R0< 0,
which imply that an increase in Q 0 or an increase in the initial curvature will
increase the time breaking of the wave front. Now for Q0 < 0, the growth and
decay phenomenon is again similar to that of plane waves, i.e. if Ψ0 > 0, then
ψ → |ψc | as R →∞. It means that no breaking is possible at the wave front.

5. Conclusions

It has been shown that an unsteady radiation field gives rise to a radiation
induced wave. It is found that the nonlinearity in the governing differential equa-
tions contributes nothing towards radiation induced waves, these waves ultimately
are damped. We have seen that in the case of plane wave front when Q 0 > 0, a
shock formation is either delayed or disallowed due to thermal radiation and mag-
netic field effects. On the other hand, thermal conduction has a destabilizing effect
on the weak wave propagation because it accelerates the process of termination
of a weak wave in a shock wave. When Q 0 < 0, the thermal radiation and mag-
netic field with finite electrical conductivity decrease the time of breaking of weak
waves, while thermal conduction increases the time of breaking of weak waves in
shock waves. In the case of cylindrical wave front an increase in Q0 or an increase
in the initial curvature will increase the time of breaking of the wave front, while
for Q0 < 0 no breaking is possible at the wave front.
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