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Tle electrodynamic instability of a self-gravitating dielectric fluid pen-
etrated by a uniform axial electric field surrounded by a self-gravitating
vacuum pervaded by general varying electric field is investigated. A general
eigenvalue relation valid to all possible (symmetric and asymmetric) modes
of perturbation for all (short and long) wavelengths is derived and discussed
in detail. The model is gravitationally stable to the pure asymmetric dis-
turbances modes while to symmetric modes it is so if the longitudinal wave
number normalized with respect to the jet radius is equal to or greater than
1.0668 and vice versa. The axial electric fields pervaded interior and exterior
to the cylinder are stabilizing or destabilizing for all disturbance modes ac-
cording to some restrictions. The transverse varying electric field is purely
stabilizing in the symmetric disturbances for all wavelengths, while it is
stabilizing in the asymmetric disturbance under some restrictions. The elec-
trodynamic force has a strong stabilizing influence in the symmetric mode
and can suppress the gravitational instabifity above a certain value of the
basic electric field.
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1. Introduction

Since the turn of the century it has been known that circular static inviscid
fluid jets are capillary unstable to axisymmetric mode of disturbances having small
axial wave numbers. Observations have shown that this capillary instability, driven
by surface forces on the jet interface, leads to the break up of the jet into droplets.

In the present time, particularly in the last few decades, the hydrodynamic,
magnetohydrodynamic and electrodynamic stability of numerous cylindrical (or
other) configurations has received the attention of many investigators [1-8]. Their
results have been essential not only due to their practical applications ranging from
the design of sprays to the design of ink-jet printers but also for their cucial ap-
plications in several fields of science, e.g. industrial field, geophysics, astrophysics,
etc.

Chandrasekhar and Fermi [9, 10] elaborated the related problem of a fluid
jet acting on its own attraction to small axisymmetric disturbances. Such a study
has a correlation with understanding the dynamical behaviour of the spiral arms
of galaxies (cf. [9]). Radwan [11] has recently modified the stability criterion of [9]
and [10] by including the effect of the electrodynamic force on the gravitational
fluid pervaded by a homogeneous and uniform electric field.

The main aim of the present work is to investigate the electrodynamic in-
stability of a self-gravitating fluid cylinder embedded in a self-gravitating vacuum
under generally varying electric field. The recent results of one of us [11] can be
recovered as a limiting case from the present analysis.

2. Formulation of the problem

Consider a dielectric gravitational fluid cylinder of dielectric constant ε( )
ambient with dielectric self-gravitating vacuum of dielectric constant ε(e). The
fluid is assumed to be homogeneous, incompressible, non-viscous and with uni-
form density p. The superscripts (i) and (e) characterize the variables interior and
exterior to the fluid cylinder. We assume that the quasi static approximation (cf.
[5] and [12]), is valid for the considered problem. In the basic state it is proposed
that there are no surface charges at the fluid boundary surface and consequently
the surface charge density will be considered to be zero during the perturbation [5].
The fluid is acting up on the self-gravitating, inertia and electrodynamic forces.
In the regions surrounding the fluid, the only force existing there is the electro-
dynamic force. We shall use the cylindrical polar coordinates (r, φ , z) system with
the z-axis coinciding with the axis of the fluid cylinder.

The basic equations for such a problem under consideration are the combi-
nation of the pure hydrodynamic, self-gravitating and Maxwell,s equations. Under
the present circumstances they are as follows:
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Here p(i), u(i) and P(') are the fluid mass density, velocity vector and kinetic
pressure, respectively, G is the gravitational constant, V(e) and V(i) are the gravi-
tational potentials exterior and interior of the fluid cylinder,Ε(e) and E(i) are the
electric field intensities acting outside and inside the fluid cylinder, respectively.

The basic state corresponding to u =	 = 0 is studied in detail and the
fundamental quantities in the equilibrium state are identified.

Assuming the dielectric fluid cylinder is pervaded by the longitudinal uniform
electric field E0(i)= (0, 0, E0), the basic equations (3) and (4) are solved in such a
state and we obtain

where α and ß are the exterior electric field parameters. The gravitational equa-
tions (5) and (6) are solved and the final forms of V^ f) and V(e) are given by:

where the subscripts 0 will characterize the equilibrium quantities and later the
quantities with index 1 will be the fluctuation quantities. Solving Eqs. (1) and (2)
and utilizing Eqs. (7)-(9), the fluid hydrostatic pressure is identified and given by:

It is clear from (10) at the fluid boundary surface r =a, the restrictions

must be satisfied, where the equality holds a limiting case with zero fluid pressure.
If the self-gravitating medium surrounding the cylinder has the same permittivity
constant as that of the fluid, the conditions are given explicitly by:

3. Perturbation analysis

Let the basic state be perturbed, then for small departures from the equilib-
rium state every perturbed quantity Q (r, di, z; t) can be expanded as

Here Q stands for each of u, P, E(i),(e) , V(i),(e) and the perturbed radial distance
of the fluid cylinder, where the quantities with index 1 are the fluctuation part of
Q. The amplitude δ(t) of the perturbed wave surface at any instant of time t is
being:



454 	 A.E. Radwan' A.R.F. Elhefnawy

where σ is the •temporal amplification and δ0 is the initial amplitude.
In view of Eqs. (13) and (14), and in considering the influence of a small

wave disturbance to the boundary interface r = α propagating in the positive
z-direction, the surface deflection is being:

with

Here n is the elevation of the perturbed surface wave measured from the equilib-
rium position and normalized with respect to α and k (any real number) is the
longitudinal wave number and m (an integer) is the transverse wave number.

By means of Eqs. (13)-(16), the relevant perturbation equations are given
by:

where

Taking the divergence of the vector equation of motion (17) and utilizing
Eq. (18), we get

The circulation equation (20) concerning the perturbed electric field inten-
sities interior and exterior to the fluid cylinder means that Ε1(i),(e) can be derived
by means of scalar functions:

Therefore the solution of the relevant perturbation (17)-(22) can be obtained
by solving Laplace's Eqs. (21), (23) and (25). In view of the (z, )-dependence given
by Eq. (16) and based on the linear perturbation technique, the scalar functions
H1') , Ψ1(i),(e) and V1(i ),(e) can be written as exp [σt + i(kz + mϕ)] times an amplitude
function of r. From this point of view, Eqs. (21), (23) and (25) are solved and the
infinite solutions are excluded. The non-singular solutions are given by:
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where -Im (kr) and Km (kr) are the modifled Bessel functions of the first and second
kind of the order m, and A, B, B, C and C are constants of integration to be
determined.

4. Boundary conditions and dispersion relation

The solutions (26)-(30) of the relevant perturbation Eqs. (17)-(22) must
satisfy certain boundary conditions. For the problem at hand these appropriate
boundary conditions at r = α are the following:

(i) The normal component of the velocity must be compatible witl the ve-
locity of the perturbed boundary surface across the interface (15).

(ii) The gravitational potential V = υ0+δυι and its derivative are continuous
across the perturbed boundary surface (15).

(iii) The electric potential Ψ must be continuous across the perturbed inter-
face r = α + η.

(iv) The normal component of the electric displacement must also be con-
tinuous across the perturbed boundary surface (15).

(v) Finally, the normal component of the total stress tensor must also be
continuous across the perturbed surface r = α + η.

Afterwards, we will obtain the analytic expressions of dispersion relations,
solving algebraically Eqs. (7), (16), (24), (26)-(30) on the above boundary condi-
tions.

The dispersion relations are as follows:

where

and x = kα is the dimensionless longitudinal wave number.
Equation (31) is the desired eigenvalue relation of an electrodynamic grav-

itational fluid cylinder ambient with self-gravitating vacuum that pervaded by
generally varying electric field. By means of the stability criterion (31) the ordi-
nary stability states as well as those of instability can be identified. The points
at which a transition from stability to instability states and vice versa (i.e. the
marginal stability) can be also determined by just putting σ = 0 in the dispersion
equation (31). The characteristic equation (31) relates the temporal amplification
σ or rather the oscillation frequency ω (that if σ = iω is imaginary) with the
modified Bessel functions of the first and second kind of the order m and their
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derivatives, the fundamental quantities (4πGp(i))-1/2 and (ε(e)E20/p(i)α2)—1/2 as
a unit of time, the wave numbers x and m, the dielectric constants ε(i) and ε (e) ,
the scale length α of to a geometric figure and with the parameters α, β of the
vacuum varying electric field.

The eigenvalue relation (31) is a simple linear combination of the eigenvalue
relations of a full fluid cylinder surrounded by a vacuum being subjected to the
self-gravitating force only and that dielectric one acted on the electrodynamic force
only. This simple additivity is not only due to the linearization of the fundamental .

equations (1)-(6) or the simple form of the electric field equations (3) and (4)
but also because no volume and no surface charges are assumed to be present in
the bulk and at the interface of the fluid cylinder. Indeed it is found that this
additivity is tue whether the electric field is uniform [11] or not.

5. Gravitational instability

Neglecting the influence of the electrodynamic force, the eigenvalue relation
(31) yields

This relation is valid for all axisymmetric m = 0 and non-axisymmetric m ≥ 1
modes of perturbation for all (short and long) wavelengths. In the rotationally
symmetric (sausage) mode m = 0, the dispersion relation (32) reduces to

The relation (33) was derived for the first time by Chandrasekhar and Fermi [9]
by employing the principle of conservation of energy.

By a resort to the recurrence relations of the modified Bessel functions

where L;,, (x) stands for Ι;n (x) and K,'„ (x), and using the fact for x 0 0 that Ι„ (x)
and Km(x) are always positive, we can prove that /(x) is always positive while
K,'n (x) is never positive. Hence for x ≠0, we have

Consequently the sign of σ 2 / (4πGp(i)) can be determined bv identifying the sign
of the quantity (Im(x)Km(x) - 1/2) for all x Ο 0 values in all possible modes of
perturbations. Since from the properties of the modified Bessel functions,

for each non-zero real value of x in all non-axisymmetric modes m ≥ 1 of pertur-
bation. Therefore the fluid cylinder is self-gravitating stable to all purely non-axi-
symmetric modes m ≠ 0 (m is integer) of disturbance for all (short and long)
wavelengths.

To the rotationally axisymmetric mode m = 0, the fluid cylinder is grav-
itationally unstable for x < 1.0668 only, while it is gravitationally stable for
x ≥ 1.0668, where the equality holds for the marginal (neutral) stability.
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For more details about the stability and instability domains and regions of
such a case, we may refer to [9].

6. Electrofluid dynamic instability

Neglecting the self-gravitating force influence assuming the electrodynamic
effect is paramount over that of the gravitational force, the dispersion equation
(31) degenerates to

In view of the properties of the modified Bessel functions, assuming that ε(e)

and ε() are positive defmite, and by an appeal to the recurrence relations (34), we
can prove that

for all x Ο 0 and m ≥ 0 values. Also, in view of the fact that Im (x) is always
positive and monotonically positive together with the recurrence relation (34) one
can show that

for each non-zero real value of x to all possible modes m ≥ 0 of disturbance.
Now returning to the stability criterion (37) and assuming that the present

model is acting upon the uniform vacuum electric field (0, 0, αΕ0), i.e. β = 0, we
have

From the analytical discussions of the relation (39), we conclude that the dielectric
fluid cylinder is electrodynamic stable if αε(e) > ε(i) for any value of α different
from zero for all m ≥ 0 and x ≠ 0 values.

If the model under consideration is acting on the vacuum varying electric
field (0„ 

β

Ε0α/r, 0), i.e. α = 0, the relation (37) is reduced to the non-dimensional
form

For axisymmetric disturbance m = 0, the dielectric fluid cylinder is stable or
unstable if β2 (xI ,(x)/Ιm (x)) is positive or negative, repectively. The sign of β2
is immaterial, while (xI'0(x)/I0(x)) is always positive for each non-zero real value
of x. Therefore, we deduce, in the case of m = 0, that the dielectric cylinder is
electrodynamic stable for all (short and long) wavelengths whatever is the value
of β.

For non-axisymmetric modes m ≥ 1, the electrodynamic force has stabilizing
influence in the terms β2(xI'm(x)/I (x)) and ε(e)(mβ)2Lm(x) while it is destabi-
lizing in the term ε(i)mβxLm(x). Therefore, we predict, when m ≥ 1, that the
dielectric cylinder is electrodynamic stable for all x Ο 0 values if the restrictions
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and vice versa where the equality corresponding to the marginal stability.
Now combining the (in-) stability results of the stability criteria (39) and

(40), one can find out the (in-) stability conclusions of the general relation (37)
concerning the dielectric fluid cylinder acting on the electrodynamic force only.
As a general conclusion one can say that there will be ordinary stable and ordi-
nary unstable domains which can be determined according to some restrictions.
Moreover, the neutral (marginal) stability occurs if the restriction:

is satisfied.

7. Electro -gravitodynainic instability

In such a general case the dielectric self-gravitating fluid cylinder surrounded
by a dielectric self-gravitating vacuum is acting on the combined effect of the grav-
itational and electrodynamic forces. It is more convenient to rewrite the eigenvalue
relation (31) in the following non-dimensional form:

where

Combining the results of the above different sections, the electrogravito
dynamic stability results of the present general case can be identifled.

In the non-axisymmetric modes m ≥ 1 of perturbations, it is found that
the electrodynamic force has a stabilizing or destabilizing influence according to
some restrictions. Since the model is gravitationally stable, the electrodynamic
force has the feature of increasing or decreasing such stability according to some
conditions. However the predominating character of the electrodynamic force is
the stabilizing influence. Hence we predict that the electrodynamic force has the
power to suppress the gravitational instability and this will be very clear below in
the most dangerous (sausage) mode m = 0 of perturbation.

In the rotationally axisymmetric (sausage) mode m = 0 of disturbance, it is
found that the marginal stability occurred as σ2 / (4πGp()) = 0 and consequently
the model will be completely stable as long as

_
where the equality is corresponding to the neutral stability.

For suitable values of α, β, ε() and ε(e) (see the inequality (11)) one can
determine exactly the value of (E0/EG) above which the gravitational instability
is completely suppressed and then stability arrises. This can be carried out and
completed by introducing the general eigenvalue (43) in the computer and also to
determine the stability states and those of instability as well.
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