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1. Introduction

When an initially isotropic molecular fluid is subject to an external electric
field, the fluid molecules involved are oriented to and, in some instances, deformed
by the action of the field on the permanent and induced dipole moments of the
molecules. The fluid becomes birefringent. This phenomenon is called the elec-
trooptical birefringence or the Kerr effect. For a weak field, the degree of bire-
fringence is proportional to the square of the field strength. The proportionality
constant multiplied by an appropriate constant factor defines the Kerr constant. ,

In order to interpret such physical processes, it is necessary to describe the
orientation motion of a molecule of a liquid. In a dense fluid, a molecule will
experience many collisions as it rotates from position to position. Tlis view of the
dynamics of molecular liquids suggests that the process is diffusion-like in nature.

Althougl a molecule in a fluid rotates along a deterministic trajectory ac-
cording to Euler's equations of motion, this motion is sufficiently complex so that
it may be viewed as proceeding through a rather randomly chosen path. Since
the orientational motion of a molecule of the liquid is affected by collisions and
has a similarly complex trajectory, it is possible to develop a diffusion model for
orientational dynamics.

Langevin [1] proposed the first mathematical theory of Kerr electric bire-
fringence (KEB), based on the orientation of anisotropic molecules dne to the
introduction of an orientation function of molecules possessing a symmetry axis.
Born [2] generalized this theory by introducing the permanent dipole moment. All
present theories involve these basic ideas.

The Kerr electrooptic phenomenon was studied intensively in a continu-
ous regime, often in a pure alternating regime, and by Pauthenier [3] in an im-
pulse regime. In the last two decades, the Laboratoire de Physique Appliquée de
l'Université de Perpignan, has contributed much to a better understanding of these
two regimes [4-8]. Filippini [9] measured experimentally the Kerr dispersion con-
stant when an alternating field superimposed on a unidirectional field is applied to
the liquid. Theoretical studies of Coffey and Paranjape [10], Morita [11], Morita
and Watanabe [12] and those of Alexiewicz [13] on the dielectric relaxation and
KEB in alternating and unidirectional fields have already appeared.

Peterlin and Stuart [14] obtained solutions of the electric birefringence in
a sinusoidal electric field E(t) = Ε0 cos(ωt) for the cases of pure induced dipole
and pure permanent dipole orientations. The solutions are limited to infinitely
small fields. Tle general case of induced and permanent dipoles coexisting on the
particle was first solved by Ogawa and Oka [15] for a very low sinusoidal electric
field E(t) = Ε0 sin(ωt). Later the same problem was treated by Thurston and
Bowhing [16] for a sinusoidal electric field E(t) = Ε0 cos(ωt).

Most of these works were made in the linear regime.
In a previous paper [17] we extended the already existent theory of linear

Kerr effect, to treat the nonlinear regime in superimposed ac and dc fields for
the general case of molecules with permanent and induced dipole moments. We
adopted a perturbation approach to treat the general nonlinear regime — within
the classical framework of the Smoluchowski theory — and proposed steady-state
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analytical expressions for nonlinear electric polarization and birefringence in terms
of KEB fundamental harmonics and characteristic eigenvection obtained from a
vector representation of the main system of equations.

In tle present study, we pursue the discussions mentioned above in two
directions. First, we analyse, using the same perturbation theory, tle tuncature
effect arising from the reduction of the main infinite sets of equations to two,
three, or four sets of differential equations in order to describe the nonlinear Kerr
effect relaxations. We deal with steady-state analytical expressions for nonlinear
electric polarization and birefringence in terms of KEB fundamental harmonics
and characteristic eigenvectors obtained from a vector representation of the main
system of equations. Second, we generalize this perturbation approach — within
the framework of the Sack formalism — in order to describe the influence of small
inertial effects on the nonlinear electric polarization and birefringence for a sudden
application of both ac and dc flelds. We also obtain the appropriate steady-state
solutions in terms of KEB fundamental harmonics and characteristic eigenvectors.
These expressions reveal the appearance of a contribution within a master matrix
which is proportional to the square of the frequency corresponding to the order of
perturbation.

In Sec. 2 we present a brief theoretical introduction, with the main sets
of differential equations, usually truncated to two sets of equations in order to
describe the nonlinear electric polarization and birefringence. Next, we develop the
perturbation expansion and justify the degree of tuncature necessary to obtain
the essential molecular information (Sec. 3). In the last section, we extend this
perturbation theory to include small inertial effects on this Kerr physical process
in any order of perturbation.

2. General theory

Upon the assumption that the particle is axially symmetric and non-interact-
ing with each other, the orientational movement of the molecule may be described
by the rotational Smoluchowski diffusion equation for the angular distribution
function f = f(θ, t):

where D is the rotational diffusion constant around the transverse axis of the
molecule, kT is the thermal energy, θ is the angle between the symmetry axis and
the field direction, t is the time, and W — the orientational energy of the molecule
— is given by

wlere μ is the permanent dipole moment along the axis of symmetry of the
molecule; Δα = α1 - α2, the difference of the molecular polarizability between
parallel α1 and perpendicular α 2 components to the molecular axis. E(t) is the
external electric field. α1 and α 2 may generally be functions of the electric field
and can be expressed in a power series of E as follows [18]:
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In the following, however, we regard the polariszability as a constant. by ne-
glecting effects due to the hyperpolarizability.

Equation (1) may be solved by expanding the distribution function f =
f(θ, 1) in the Legendre polynomials [5-8, 11-13, 17, 19-22]:

where G (t) is a function of time and Ρn is the Legendre polynomial of degree n,

Substituting f into Eq. (1) and using the recursion relations between the
Legendre polynomials, one. can simply obtain the recurrence relation as follows
[5-8, 11-13, 17, 19-22]:

where

for the normalized distribution function f -1+1 f(u, t)du = 1, in which angular brack-
ets represent the ensemble average and f (u, t) is the normalized distribution func-
tion in the new variable u.

The electric polarization and birefringence are directly connected to y1 (t)
and y2(t) [6, 12, 17, 22]. But the precision of the calculation of these quantities
depends on the degree of the truncature solving Eq. (6). In the previous paper, we
limited to n = 2 by taking up the terms of second power of Ε(t) and fourth power
of Ε(t) for nonlinear electric polarization and electric birefringence, respectively

Various papers were devoted to the approximation of analytical and numeri-
cal treatments of Eq. (6) or its variants for the dielectric relaxation and Kerr elec-
tric birefringence in numerous regimes of external electric fields [11-14, 19, 20-24].
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Hounkonnou [22, 26] has recently used the Runge—Kutta method to solve this
equation by including the nonlinear and inertial effects for a sudden application of
an alternating field superimposed on an unidirectional field. He has given an exact
analytical solution to the same equation, when one applies the unidirectional field
[27].

Mathematically exact solutions of Eqs. (7) for an alternating field superim-
posed on an unidirectional field are difficult to obtain. In the previous paper, we
emphasized the usefulness of exact steady-state solutions and used a second-order
perturbation theory in order to solve Eqs. (7a) for

Here, we adopt the same perturbation approach to obtain the steady-state
solutions y1 (t) and y2 (t) from systems (7b) and (7c) for electric polarization and
birefringence, using a step by step tuncature procedure including, respectively,
y3(t) and y4(t) in system (7a):

and

3. Perturbation expansion: truncature effects

• 	 Using the following reduced variables:

and writing

where
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the systems (7) may be translated into vector representation as follows:

where:

a) For the representation of system (7a)

with β = ß(t 1 ), γ = γ(t1); ε is a small parameter.
Particular cases of ordinary linear electric birefringence of Kerr (KEB) were

treated by Morita and Watanabe [11, 12, 23] and Dejardin and Débiais [21] by
considering

The same situation was examined by Schwarz [24] for purely apolar molecules
(γ = 0). Okonski [25] studied the purely polar molecules (β = 0).

b) For the representation of system (7b)

c) For the representation of system (7c)

In the following, we consider the general case of molecules having permanent
and induced dipole moments without any approximations of above mentioned
molecular parameters γ(1 1 ) and β(11).
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By expanding the dependent variables [Α(t 1, 6)], Υ(t1 , ε), and F(t1, ε) as a
power series in ε, we generate a solution to any desired order in ε. Hence, we have

where:
d) For system (7a)

e) For system (7b)

f) For system (7c)
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By analogy to Eq. (10), we obtain the vector expansion of F(t1, ε):

where:
g) For system (7a)

h) For system (7b)

i) For system (7c)

Thus, we write the vector Υ(t1, ε) as

Substituting (10), (11) and (12) into Eq. (9) and equating the coefficients of
successive powers of ε, we obtain
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At any reduced time, the vector Υ (t 1 ) can be formally written as the su-
perposition of two solutions: the first describing the transient behavior Τ( 1 ) of
the system, and the second — its steady-state evolution Ζ (t1):

For the system (7a), for example, we can obtain the characteristic time τ,
at the end of which the transient regime vanishes, by solving the characteristic
equation of [Α0], i.e.

where λ is an eigenvalue of [Α 0 ] , I — the identity matrix.
Expanding Eq. (15), we obtain for system (7a):

The discriminant Δ' of Eq. (16) is

with R = γ2c /βc (γc and β .c 1). We obtain approximately

Thus, after a reduced characteristic time τ0 ≥ τ1 , the system evolves to
a steady regime. We note that the mentioned characteristic time is in excellent
agreement with the numerical results of Lee et al. [20] and with the analytical
solution of Hounkonnou [27].

In the following, we are interested in the steady-state solutions for all systems
(7). Thus, Eq. (14) is reduced to

Therefore, it is straightforward to find

F0 is well known. Hence, the vector Z0 is well defined. Explicitly, we obtain using
Taylor expansion (using REDUCE):
j) for system (7a):
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k) for system (7b):

l) for system (7c)

where i0(t1) is the vector of components y1(t1) and y 2 (Í 1 ) defining the nonlinear
electric polarization and birefringence to zeroth order of ε. Here, the superscript
i indicates the number of set of differential equations taken account of in solving
Eqs. (18).

The best way to appreciate the truncature effect is to evaluate the difference
vector of these solutions. This operation gives, defining by three vection (Ζ40(t1) -
Ζ (t 1 )), (Ζ (t 1 ) - Ζ (t 1 )), (Ζ40(t1) — 420(t1)), arranged as the columns of a 2 x 3
matrix ΔΖ:

In the case of very small molecular reorientation energy related to the agita-
tion thermal energy kΒΤ, βc and γc « 1, ΔΖ reduces to a zero matrix Ο. Therefore,
Ζ(t 1 ) is a good approximation to describe nonlinear Kerr effect relaxations.

In the following, we will consider only the system (7a). For simplification,
we will denote all solutions by Ζj , j being the order of perturbation.

To the first order of ε, we have

Α particular solution can be written (dΨ/dl = 0):

where δ represents a certain phase angle. Exploiting Eqs. (19) and elementary
trigonometric relations, we obtain

Equation (20a) leads to

Equation (20c) shows that φ is an eigenvector of [Α 0] corresponding to the  eigen
-value λ (λ = λ1, λ = λ 2 ) as follows:

The value δ (δ = δι , δ = δ2 ) is tlus determined, since λ is well known. In addition,
the vector ΨΨ is defined by Eq. (19b). Therefore, the norms of the eigenvectors



Equations (22c) and (22d) show again that ϕi (normalized by Eqs. (22a) and
(22b)) is an eigenvector of [Α01 which corresponds to eigenvalue λj:
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are determined by Eqs. (20b) and (20c) and the general solution Ζ1(t1 ) is entirely
defined by the superposition of the particular solutions as follows:

This vector solution only depends on ac field harmonics and eigenvection expressed
in terms of molecular parameters.

We now examine the solution to the second order of ε. We have

We can also write as steady oscillating and constant solutions

Analogously to the case of the first-order calculation, exploiting Eqs. (21) and
elementary trigonometric transformations, we define Ζ2 by the following relations:
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Thus, the vector Ζ2 is entirely defined by the superposition of solutions:
constant X and ϕi (i = 1, 2, 3) for each eigenvalue λj of [Α 0] and therefore to
second-order perturbation, the steady solution of the vector Eq. (9) is given by

Thus, the second-order steady-state perturbation solutions of electric polar-
ization and birefringence are expressed as functions of single and double ac field
harmonics and molecular parameters.

4. The Sack formalism

Starting from the Smoluchowski equation of rotational Brownian motion as
modifled by Sack for the angular distribution function f(4, t) [22, 30-32] and us-
ing the same standard development based on the mean value of the n-th Legendre
polynomial [1, 3-6, 16, 17], we obtain a set of equations in which the two first Leg-
endre polynomials are directly related and proportional to the electric polarization
and birefringence, respectively [22, 30-32]. Using the above-mentioned perturba-
tion formalism, we obtain

where all the quantities keep the values expressed in Sec. 3, point (a) and

Ι is the moment of the inertia about the transverse axis of the molecule.
The perturbation expansion leads to

We can determine the reduced characteristic time τ, at the end of which the
transient regime vanishes, by solving the homogeneous part of Eq. (23) including
only the dominant eigenvalues of [Α 0 ]. This operation gives τ = 0.5.



Arbitrary Order Perturbation Expansion Applied ... 437

In the following, we are interested in the steady-state solutions of Eq. (23)
and denote it Ζ (t 1 ) where n corresponds to the order of perturbation. To the
zeroth order of perturbation (Eq. (24a)), it is straightforward to find

Ϊ0 is well known. Hence, the vector Z 0 is entirely defined  by Eq. (25). To the first
order of perturbation, substituting a particular solution,

where δ represents a certain phase angle, Eq. (24b) leads to

with

From Eq. (26a) we obtain

which shows that φ is an eigenvector of the master matrix ([Α 0] + ( ω2[J]) corre-
sponding to its eigenvalue σ (σ = σ1 , σ = σ2 ) as follows:

The norms of these eigenvection are determined by Eqs. (26b) and (26c) and
the general solution to the first order of perturbation is entirely defined by the
superposition of particular solutions as follows:

To the second order of ε, writing a particular solution as

where

Δ is a certain phase angle.
The use of elementary trigonometric transformations in Eq. (24c) leads to
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Let us put ϕ = Σ3 i=1 ϕi, where ci is a solution of Eqs. (27c) and (27d) when
ϕi = 0, j = i and by analogy in circular way for each ϕi. We obtain

Equations (28) show again that ϕi (normalized by Eqs. (27)) is an eigenvector of
([Α 0 ] + 4ω' 2 [J]) which corresponds to eigenvalue ij:

Thus, the vector Ζ2 is entirely defined  by the superposition of solutions:
constant X and ψi (i = 1, 2, 3) for each eigenvalue ij of ([A 0 ] + 4ω' 2 [J]) and
therefore to the second-order perturbation, the steady-state solution of tle vector
Eq. (23) is given by

The results obtained agree essentiahhy with those of our previous analysis
on the nonlinear Kerr effect [17]: the inertial effects generate an additional con-
tribution within the expression of the master matrix characterizing the nonlinear
electric polarization and birefringence. This new term is proportional to the square
of the frequency multiplied by the order of perturbation. To the zeroth-order per-
turbation, this term is equal to zero; to tle first order its value is ω' 2 [J] and to
the second order of perturbation, the inertia matrix takes the value 4ω' 2 [J] (2ω'
corresponding to the frequency of the second order of perturbation).

It is easy to obtain the solution of Eq. (24d) to any order in ε taking into
account, as shown in Eq. (23), that [A] and [.Σ'] contain at most quadratic terms
in ε. Iteratively, we see immediately that the solution to order n in ε contains only
frequencies up to nω'.

For small inertial coefficient α, it is also possible to expand the eigen vection
and eigenvalues of ([Α 0] + ω' 2 [J]) in terms of [Α 0] (given in a previous work [29])
and to compare solutions witl and witlout inertia, keeping the same physical
constants Δα, μ, ω.

With the inertial effects neglected, our results reduce to those of the well-
-known relaxation theory of the Kerr effect.

The conditions for which inertial effects have to be taken into considera-
tion in relaxation phenomena were discussed by Gross [33]. Sack [32] proposed the
modified Smoluchowski equation of rotational Brownian motion of molecules in
liquids, and determined the conditions of its validity. This equation, which holds
for small inertial effects, was applied by Coffey [34] to calculate the orientational

autocorrelation functions of spherically symmetric bodies with a moment inertia
and a permanent dipole moment, and [35] to study the influence of dipole-dipole
coupling on dielectric and Kerr relaxation. The same equation is also successfully
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used recently by Alexiewicz [36, 37] to treat the molecular Kerr relaxation theory
for liquids in reorienting pulse fields and to take into account the small inertial
effects in the time transients of nonlinear electric polarization in liquids. For prac-
tical purposes [35] the inertial effects will only start to come into prominence when
Brownian movement is used to model high-frequency relaxation processes such as
dielectric relaxation and Kerr-effect relaxation.

In the general case, taking into account inertial effects would involve the
use of an angular velocity-dependent statistical molecular orientation distribution
function; this, in turn, would require the solving of the generalized Liouville equa-
tion or Kramers (Fokker-Planck—Kramers) equation for the rotational Brownian
motions of the molecules in the liquid [38]. An account of the modern techniques
of solving the Kramers equations is to be found in the monograph [39]. Some of
these techniques are recently used by Coffey [40] and Déjardin [41]. Nonetheless,
the complete analytical solution of the problem is still lacking.

We now analyse the mathematical difficulties arising from these techniques
in order to propose [42] an exact analytical solution for the Kerr effect relaxations.

5. Conclusions

In the present state of the theoretical development of the Kerr relaxation
processes in coupled ac and dc fields, we were unable to find in the literature exact
results concerning the electric birefringence taking into account nonlinear effects.

Indeed, the system of equations giving the electric polarization and bire-
fringence are very difficult to solve analytically when both ac and dc pertur-
bations are present. Some authors proposed approximate solutions in the linear
regimes [6-8, 11, 21]. However, to solve these complex systems account must be
taken of the nonlinear effects of species in a given physical medium. Numerical
methods have been used in recent works [20, 22, 26] to solve this problem. Ap-
proximate analytical solutions to this problem were also obtained by means of
tedious Laplace transforms [21, 28, 29], but the resulting expressions are not sim-
ple to exploit.

The main purpose of this paper was to find another approach to solve this
problem: the steady-state nonlinear electric polarization and birefringence in cou-
pled ac and dc fields are expressed explicitly in terms of molecular parameters
and ac field harmonics. To take this into account, we applied a second-order per-
turbation theory which turns out to be sufficient to produce the fundamental
harmonics of KEB when the fluid under investigation is perturbed by an alteuat-
ing field [4-8, 11, 12, 22, 26, 29]. This perturbation theory is very general and we
extended its solution to any desired order in ε. In particular, we proved that the
effects of higher harmonics in these flelds (but less relevant experimentally [8]) are
easily obtained by a simple recurrence procedure, even when the inertial effects
are included. Prior to any calculations, we justified the degree of truncature, in
the infinite set of differential equations, necessary to obtain the essential molecular
informations.



440 	 M.N. Hounkonnou, A. Ronveaux

Although all these results are purely theoretical, they provide a basic for-
malism for the interpretation of experiments on the nonlinear dynamic molecular
relaxation processes in coupled ac and dc fields.

Using the experimental values of μ and Δα, and choosing the appropriate ac
and dc fields, the curves of electric polarization and birefringence can be drawn and
compared to the steady experimental data. Conversely, the molecular parameters
μ and Δα could be easily extracted from the steady solutions obtained here.

However, the inexistence of experimental data of steady-state time evolu-
tion of nonlinear ΚEB in ac and dc superimposed fields does not permit such
comparisons today.

Analysing the results obtained, we also notice the appearance of a single
frequency for the first-order solution, whereas the second-order solution leads to
double frequency as the fundamental harmonics of ΚEB. This agrees well with the
numerical calculations [22, 26].

These general steady-state theoretical expressions provide the basis for dis-
cussion of the steady-state harmonic variations in the phenomena of electric po-
larization and birefringence.
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