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For a two-level problem in one dimension, an implicit relation is derived
relating the kinetic energy density t s (x) to the electron density p(x) plus its
first and second derivatives. As an example, tle harmonic oscillator potential
is used to make this relation explicit.
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1. Introduction

It remains of considerable interest in density functional theory to derive the
single-particle kinetic energy density t 3 (x) in terms of the electron density p(x)
and its low-order derivatives. One such approximate theory is Thomas-Fermi plus
von Weizsäcker (TFW), which yields in one dimension the result

Of course, Eq. (1.1) is tue in this approximate tleory in the sense that 1 3 (x) is a
functional of p(x).

• 	 While the generalization of Eq. (1.1) to potentials and densities with arbi-
trarily fast variation in space remains important, our aim is more modest, namely
to calculate t 3 (x) from the ground-state electron density p(x) and its derivatives
for the two-level problem. This leaves open the question of t s (x) as a functional
of p(x).

(421)



and the ambiguity of sign drops out since sin(-x) = - sin(x). Solving this flrst-order
differential equation for Y'(x) then yields
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2. Two-level system described by density amplitude and phase

We refer to an earlier work [1] on the two-level problem which yields, with
wave functions Ψ1 and ψ2 and corresponding one-electron eigenvalues ε1 and ε2,

where the equation for the phase θ(x) is [2]

The kinetic energy density ts has the form

Defining the quantity Υ(x) by

one has from Eq. (2.4)

Hence

which is now to be employed in Eq. (2.3) to derive an implicit relation between
Υ(x) and p(x). After a little calculation, Eq. (2.3) then becomes

This equation is therefore the desired relation between t 3 (x) density and its first
and second derivatives, as seen by invoking Eq. (2.5).

3. Example of linear larmonic oscillator

Using the results of Lawes and March [3] and March and Nalewajski [4] one
readily fmds for the first two levels occupied in a harmonic oscillator fleld

thus
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But Z can be expressed in terms of p since for this example the density has the
explicit form

and θ(x) has the form [5]

Hence

In terms of Υ in Eq. (3.2), we then have

Finally, from Eq. (2.5) one can substitute for Y in terms of t s , to relate is to p, p'
and p"

4. Summary and conclusions

Equation (2.9), valid for two occupied levels in one dimension, is of some
interest for density functional theory. However, since it has been derived by using,
essentially, an Euler equation (i.e. Schrödinger's equation for the ψ ι and ψ2) it has
not been proved to represent i s as a functional of the electron density. It does,
however, afford a route to calculate ts from a given density, though it must be
pointed out that the eigenvalue difference ει - ε2 also enters the equation. The
results have been made quite explicit for the harmonic oscillator with two occupied
levels. It is, in a sense, explained in the Appendix in which the use of Eq. (2.7) for
the phase allows a formally exact generalization of the JWKB approximation to
the wave functions ψ l and ψ2.

As a final comment, let us return to Eq. (2.5). Multiplying by p and inte-
grating over the whole space then yields the total kinetic single-particle energy
as

From Eq. (2.9), as already emphasized, Y is determined completely by knowledge
of p(x) plus (ει - ε2)/2.
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Appendix: Relation to JWKB theory

To relate the treatment above to JWKB theory [6, 7] let us return to the
wave functions Ψ1 andΨ2in terms of the density amplitude√p(x) and the phase
θ(x) in Eq. (2.1) and (2.2). Using Eq. (2.7), we fmd for  Ψι the result

But from Eq. (2.5), Y(x) can be expressed in terms of the kinetic energy density
1 3 (x) together with p(x) and its derivatives. In the spirit of semiclassical theory,
one can now:

a) Neglect the derivatives of the density.
b) Use the semiclassical form ckp3 (x) quoted in Eq. (1.1) for ts(x).

Hence

But in the semiclassical limit the Euler equation for the density becomes

or

and inserting this into Eq. (Al) leads to the oscillatory part of the wave function
in the usual JWKB form. Presumably, the refined kinetic energy functional, in-
serted into Eq. (2.5) for Y(x), would lead by substitution into Eq. (Al) to refined
single-particle wave functions.
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