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The Mac Lane method of classification and construction of all exten-
sions of a group Q by an Abelian group Τ is demonstrated on the case
Q = D2, Τ = C2. Constructions involving free groups and operator

homomorphisms are performed in detail, and the complete list of resulting
extensions is given. It is shown that there are 8 classes of gauge equivalency,
and they fall into 4 classes of isomorphism. The role of gauge transforma-
tions is pointed out. Physical contexts of various constructions are reviewed.
A comparison with the direct cohomology definitions is performed.

PACS numbers: 02.20.+b, 02.40.+m, 03.20.+i , 11.30.Εr

1. Introduction

In part I [1] of this review the general Mac Lane method of construction of
equivalency classes of extensions of a finite group Q by an Abelian group T under
a given action Δ : Q —> Aut Τ has been presented in detail, and its relevance
in physics has been pointed out within the context of crystallography and gauge
fields. Here we intend to demonstrate this general method on a specific example
of the simplest dihedral group

where li denotes the unit element, and u x , u y , u are twofold axes coinciding with
a Cartesia coordinate system. In the first stage we assume that Τ is an arbitrary
finite Abelian group, and next we specify it as the two-element group

(395)
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with the non-trivial element denoted by E. In particular, we are going to classify
all non-equivalent extensions of D2 by C2, i.e. to determine the second cohomol-
ogy group H2 (D2 , C2) (in tlis case the action Δ is trivial). This case is simple
enough to demonstrate in detail the most of the notions of the Mac Lane method
presented in [1], and to provide some physical interpretation to various algebraic
and combinatorial constuctions. This work is miotivated by our belief that such
an approach can shed some new light into the fascinating problem of combination
ways of geometric and gauge symmetries, and related phenomena like quantum
Hall effect [2], Berry phases [3-5], topological invariants [6], flux quantization [7],
etc., by exposing the possibilities of constuction of extensions of some groups
already known in crystallography.

Clearly, the group D2 has a crystallographic interpretation as a point group,
consisting of three mutually perpendicular twofold axes, coinciding with axes of a
Cartesian coordinate system in an Enclidean three-dimensional space. In quantum
field theories [10] it arises as the group of discrete space-time inversion symmetry
(e.g. ux = P, u, = Τ, u z = PT with P and Τ being respectively parity and time
reversal); in particular, it labels the four disjoint pieces of the Lorentz group. It
is also isomorphic with the automorphism group for some cyclic groups CN (e.g.
N = 8, or N = 12), and tlus serves as the group of hidden symmetry of tle recipe
of Weyl [11], applied to a closed linear chain of N atoms with an interpretation of
fractal symmetry ([12, 13]).

In the following we use the notation introduced in [1].

2. Free groups and their alphabets

The Mac Lane method of construction of all extensions G of the group Q by
the group T uses the following exact sequence

as a covering prototype of the exact sequence

which defines the extension G. Here i and ti are injection monomorphisms, .211
and ω are epimorphisms, F is the free group, generated freely from a set A of
generation of the group Q, and R is tle kernel of the monomorphism Μ (cf. [1]
for more detail).

In the case Q = D2 we choose the set

as generation of D2, and thus we write down the alphabet Χ of the free group F
as

with

The decomposition of the group F into right cosets with respect to the
subgroup R, i.e.
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corresponds to the choice of tle Schreier set S as

The Schreier set S determines the factor system p : Q x Q → R for the covering
exact sequence (3) by means of the formula

with the right coset representatives fq belonging to S, q E Q. The results are listed
in Table I. Clearly, entries p(q 1 , q2) of the factor system p belong to the subgroup
Ra F, but they are expressed in Table I in terms of the alphabet X of the group F.

We observe that the alphabet Χ is a subset of the Schreier Set S. This
observation allows us to identify the alphabet Y of the subgroup R with the set
of all non-trivial elements of the second and third columns of Table I since

(cf. Eqs. (58) and (79) of [1]). Thus we have

Tle number of all letters in the alphabet Y satisfies Eq. (61) of [1], which reads

Using Eq. (78) of [1], one can readily express the factor system p in terms of the
alphabet Y. The results are given in Table II. In fact, Eq. (12) determines the
monomorphism i : R → F of the exact sequence (3).

The free group F acts on its subgroup R by inner automorphisms. This
action, denoted in [1] by Ξ : F → Aut R, is defined using both alphabets, X and
Y, as
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Table III describes this action by expressing each xyx -1 in terms of the alphabet Y.
All the above results, i.e. tle alphabet Y of the group R of all relations of

the group Q, the factor system p : Q x Q → R, and the action Ξ : F -4 Aut R,
are determined by the active group Q of the exact sequence (4). Further steps of
the Mac Lane method involve also the passive group Τ. They will be considered
in the next chapters.

3. Operator homomorphisms and two - cocycles

Constuction of the group HomF(R, T) of all operator homomorphisms from
the kernel R of the epimorphism M : F → Q to the group Τ (which is the kernel
of the epimorphism ω : G -> Q) starts from the manifold

of all mappings from the alphabet Y of the group R into the group Τ. Clearly,
each such mapping generates a single homomorphism, therefore, in particular,

In general, the set (15) is the main subject of combinatorial enumeration theory
[14], and its members can be arranged into orbits of some permutation groups,
acting on Τ and Y [15, 16]. Here, the size of the manifold C2' is so small that we
do not specify any classification of its elements.

We have to select from the manifold Τ the submanisfold of all operator
homomorphisms, i.e. such mappings which intertwine the actions Ξ : F Aut R
and Δ : Q → Aut Τ. They have to satisfy the conditions
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(cf. Table III). We rewrite these conditions in Table IV, where we assume the
trivial action of Q on T. This table contains |X| . |Y| = 2 . 5 = 10 conditions,
labelled by pairs (y , x), y E Y, x Ε Χ . Clearly, not all these conditions are
independent. Three of them, namely (y1 , x 1 ), (y2, x 2 ), and (y5, x2), are identities.
It is convenient to specify the group Τ before evaluating further conditions. We
assume here the additive notation for the group Τ = C2 , i.e. we put 0 and 1 for E
and E , respectively, with addition modulo 2. Then the conditions (y2, x1), (y5, x1),
and (y3 , x 2 ) yield

and tle last condition (y, x 2 ) depends arithmetically on (18) and (19). Tlus tle
submanifold HomF(R, Τ) of Τ3  is generated by three independent variables, e.g.
yl, Υ2, and y3, so that

Tle list of all operator homomorphisms is given in Table V.
Each operator homomorphism φ  HomF(R, C2) yields a two-cocycle m :

Q x Q —> C, given by

where p : Q x Q → R is given by Table II. These two-cocycles are listed in Table VI.
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Each cocycle m defines an extension G through the Seitz formula. In order to
determine equivalency classes, we proceed to evaluate two-coboundaries, which
are associated with crossed homomorphisms.

4. Crossed homomorphisms and the second cohomology group

The group

of all crossed homomorplisms from F to T can be identifled with the mamfold of
all mappings from the alphabet Χ to T. For the case of T = C2 , we obtain four
crossed homomorphisms γ1 , ... , γ4, listed in Table VII. Using Eq. (12), it is easy

to evaluate that all restrictions γ|R = i o γ of these mappings to the subgroup
R 4 F vanish identically, i.e. that

Thus the group of restrictions of crossed homomorphisms is in our case trivial (the
action Δ in this case is trivial).

By virtue of Mac Lane theorem, the second cohomology group is equal to
that of operator homomorphisms, i.e.

Elements of the second cohomology group can be identifled with factor systems
of Table VI, with the group multiplication defined as addition of corresponding
matrices modulo 2. It is an elementary Abelian group, with the unit element ml,
and all other elements of order 2.

5. Classes of extensions of D2 by C2

Each element m  H2(D2, C2) yields the corresponding extension G of D2
by C2 , determined by the Seitz formula

for multiplication in G. There are tlus 8 classes of non-equivalent extensions, which
are listed in Table VIII. The trivial factor m1 yields the elementary Abelian group
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of order 8, i.e.

with all non-trivial elements of order 2. It is isomorphic with the crystallographic
point group D2 h . It also arises in quantum field theory in the context of CPT
theorem [10], as the simplest combination of discrete space and time inversions
witI any internal symmetry of charge conjugation. We like to mention here that,
despite of the simple stucture (26) of the group C1, the appropriate Wigner-Racah
calculus suffers from some puzzles concerning proper conventions of phases (cf.
Chatterjee and Buckmaster [17] and references therein).

Factor systems m3, m5 and m7 yield extensions isomorphic with the Abelian
group C2 x C4. They are mutually isomorphic, but not equivalent extensions. The
order of any element of the form (t, uα ) , t  C2, is either 2 for a single α = x, y , z,
or 4 for the two other α,s. These extensions differ mutually by the distinguished
element ?α E D2 associated with the twofold element of G. It is denoted in Table
VIII by the superscript α at the symbol of the isomorphic group.

Factor systems m 6, m4 , and m2 correspond to dihedral groups D4 with the
fourfold axis associated respectively with x, y , and z. These extensions are thus
non-Abelian groups, each with two fourfold elements (t, uα), t  C2 , α fixed.

The factor system m8 yields the double dihedral group D' with the three
twofold axes ux , u,, and u transformed into pairs { (t, uαΡ | t E C2) of fourfold
elements, written usually in a form {u αΡ , ŭα), α = x, y , z, with

where

is interpreted as the rotation of the angle 2π (around any axis) for spinors [18].
The double dihedral group D'2 can be readily identified with the group of quater-
nions, playing an important role in description of rotations of solid bodies (cf.
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Altmann [19] for a fascinating history of puzzles accompanying the use of quater-
nions).

It is worthwhile to observe that various extensions of D2 by C2 are non-
-isomorphic. There are four isomorplic classes of extensions. Two of tlem, namely
G1 and {G3, G5, G7}, are Abelian, and the two other, G8 and {G 6 , G4, G2} are
non-Abelian. These isomorphic classes can be nicely reflected in the isomorphism
between the second cohomology group H22 (D2, C2), and the point group D2h, as
given in Table IX. The table shows that extensions within an isomorphic class can
be labelled by indices α = x, y , z of the Cartesian coordinate system.

Isomorphic classes differ by the number of fourfold elements: 0, 4, 6, and
2 for G1, {G3 , C5, G7}, G8, and {G6, G4, G2}, respectively. Such a doubling, or,
more generally, multiplication of order of the element q E Q in the coset Tgq of the
extension G has a known crystallographic interpretation in terms of screw axes or
glide planes with the associated fractional translations.

6. A comparison of Mac Lane method with an immediate application
of cohomology

Now we have demonstrated the application of Mac Lane method of classi-
fication and constuction of all extensions of the group D2 by C2. In this section
we make some comparison of this method with an immediate adaptation of coho-
mology to this case.

The cohomology theory starts with tle group

of all two-cochains  The order of tlis group is

Each two-cochain f  C2 (D2 , C2) should satisfy

associativity conditions

where δ 2 is the two-coboundary operator. We observe that the associated numerical
problem is ratler large even in such a simple case. It increases exponentially with
the increase either the active group Q or the passive group Τ.
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After performing such a calculation one arrives at the group

of all two-cocycles. Tle group classifies all extensions since each f  Ζ 2 (D2, C2)
serves as a distinct factor system. All these extensions are different, but some of
them can be gauge equivalent. We thus need to find the group

of all two-coboundaries,  which is a normal subgroup in Ζ2 (D2 , C2). By the defini-
tion (34), it can be performed by an application of the one-coboundary operator
δ 1 : C 1 (D2, C2) --> C2 (D2, C2) to the group

of all one-cochains c. C 1 (D2, C2) is the group of gauge transformations. Each gauge
transformation c yields an equivalent extension.

The order of the gauge group is

(cf. Table Y). The two-coboundary δ 1 c associated with a gauge c E C 1 (D2 , C2) is
given by

is a subgroup of C 1 (D2, C2), given in the first column of Table X. It consists of all
such gauges which do not change any factor system. In our case, when the action
of D2 on C2 is trivial, each such a gauge defines a representation of the active
group D2 , valued in the passive group C2.
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Equation (37) and Table t' yield the group Β 2 (D2, C2) of all two-coboundaries
(one has to apply Eq. (37) to a single gauge c for each column of Table X). This
group is given in Table XI. We observe that the two-coboundaries b 1 and b2 satisfy
the defining condition

for a normalized factor system, whereas b3 and b4 are unnormalized.
Thus the group Β 2 (D2 , C2) can be easily evaluated merely from the coho

mological definition. It is not the case for the group Ζ 2 (D2, C2) of all two-cocycles,
where much more numerical effort is needed. Using the fact that the order of the
second cohomoly group is 8, we obtain

Table XI implies that the factor systems of Table VI are not unique, but
they are given only modulo the group B 2 (D2 , C2) of all two-coboundaries. Even if
we restrict ourselves to normalized factor systems (39), still each m of Table VI
can be substituted by a gauge-equivalent factor system

Thus, e.g. the factor system m8 of Table VI

is gauge-equivalent to

In terms of the extension C8, i.e. the double group D 2 , it means that the relations



406 	 T. Lulek, R. Chatterjee

and

for the double group D'2 are gauge-equivalent (cf. [20]). This arbitrariness is nicely
reffected in the fibre structure of the extension G8, where {uz , ŭz )  D'2 forms the
fiber over u z E D2, and each element of this fiber is equally good as the candidate
for (0, ux ) (0, u y ).
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