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The Mac Lane method of classification and construction of all exten-
sions of a group @ by an Abelian group T is demonstrated on the case
@Q = D,, T = C. Constructions involving free groups and operator ho-
momorphisms are performed in detail, and the complete list of resulting
extensions is given. It is shown that there are 8 classes of gauge equivalency,
and they fall into 4 classes of isomorphism. The role of gauge transforma-
tions is pointed out. Physical contexts of various constructions are reviewed.
A comparison with the direct cohomology definitions is performed.
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1. Introduction

In part I [1] of this review the gencral Mac Lane method of construction of
cquivalency classes of extensions of a finite group @ by an Abelian group T under
a given action A : @ — Aut T has been presented in detail, and its relevance
in physics has been pointed out within the context of crystallography and gauge
fields. Here we intend to demonstrate this genecral metliod on a specific example
of the simplest dihedral group

Q = Dy = {E,ug, uy,u;}, (1)
where I denotes the unit element, and u,, uy, u, are twofold axes coinciding with

a Cartesia coordinate system. In the first stage we assume that 7" is an arbitrary
finite Abelian group, and next we specily it as the two-element group

T=C,={EE} (2)

(395)
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with the non-trivial element denoted by E. In particular, we are going to classify
all non-equivalent extensions of Dy by Cb, i.e. to determine the second cohomol-
ogy group II*(Ds,C3) (in this case the action A is trivial). This case is simple
cnough to demonstrate in detail the most of the notions of the Mac Lane method
presented in [1], and to provide some physical interpretation to various algebraic
and combinatorial constructions. This work is motivated by our belief that such
an approach can shed some new light into the fascinating problem of combination
ways of geometric and gauge symmetries, and related phenomena like quantum
all effect [2], Berry phases [3-5], topological invariants [6], flux quantization [7],
ete., by exposing the possibililies of construction of extensions of some groups
already known in crystallography.

Clearly, the group D; has a crystallographic interpretation as a point group,
consisting of three mutually perpendicular twolold axes, coinciding with axes of a
Cartesian coordinate system in an Euclidean three-dimensional space. In quantum
field theories [10] it arises as the group of discrete space-time inversion symmetry
(c.8. ug = P,uy =T, u, = PT with P and T being respectively parity and time
reversal); in particular, it labels the four disjoint pieces of the Lorentz group. It
is also isomorphic with the automorphism group for some cyclic groups Cn (e.g.
N =8, 0or N = 12), and thus serves as the group of hidden symmetry ol the recipe
of Weyl [11], applied to a closcd linear chain of N atoms with an interpretation of
fractal symmetry ([12, 13]).

In the following we use the notation introduced in [1].

2. Free groups and their alphabets

The Mac Lane metliod of construction of all extensions G of the group Q by
the group T uses the following exact scquence

0=RLFM Q-1 3)
as a covering prototype of the exact sequence
0-TE5GSQ—1, 1

which defines the extension G. Ilere ¢ and « are injection monomorphisms, A
and w are epimorphisms, F is the frce group, gencrated freely from a set A of
generators of the group @, and R is the kernel of the monomorphism M (cf. [1]
for more detail).

In the case Q = Dy we choose the sct

A= {u,,-, uy} (5)
as generators of Dy, and thus we write down the alphabet X of the free group F
as

X = {z1,22}, (6)
with

M(zy) =uz, M(z2)=1uy. (7

The decomposition of the group F into right cosets with respect to the
subgroup R, i.e.

FZRURZ]_UR:L’QURZ'I(I:Q, (8)



Mac Lane Method for Delermination of Extensions ... Part II 397

corresponds to the choice of the Schreier set S as
S = {61:',1:1,1:2,21.1‘2}. (9)

The Schreier set S determines the factor system p:Q x Q — R for the covering
exact sequence (3) by means of the formula

fh fqz = p(ql.’ q2)fq;q2: (Qh 42) € Q2 (10)
with the right coset representatives f, belonging to S, ¢ € Q. The results are listed
in Table I. Clearly, entries p(q1, g2) of the factor system p belong to the subgroup
R<F,but they are expressed in TableI in terms of the alphabet X of the group F.

TABLE I
The factor system p : @ x Q@ — R, expressed in
terms of the alphabet X of the group F. er is the
unit element of the group F. Observe that {z1,z,} =
X C S = {er,z1,22,2172}, and thus all non-trivial
entries of the second and third column constitute the
alphabet Y of the subgroup R F.

Ep Ty ZT9 122
er er €F eF eF
z1 |ep z? er z?
-1,-1 2 =1
Z9 EF | T2X1ZH "2y zy T2Z1T2T
zizy | ep | zizazizy! | zpadey! Z1T2L1L

We observe that the alphabet X is a subset of the Schreier set S. This
observation allows us to identify the alphabet Y of the subgroup R with the set
of all non-trivial elements of the second and third columns of Table I since

o Y ={p(e1,02) | M(q1) €S, M(q2) € X} (11)
(cf. Egs. (58) and (79) of [1]). Thus we have

I RS S -1,-1
Y ={y =2 =23} y3s=zamzy 27},

Ya = 131132.1311'2—1, Ys = xlwngl} . (12)
The number of all letters in the alphabet Y satisfies Eq. (61) of [1], which reads
5:|Y|=1+(|X|—-1)[Q|=1+(2—-1)-4. (13)

Using Eq. (78) of [1], one can readily express the factor system p in terms of the
alphabet Y. The results are given in Table II. In fact, Eq. (12) determines the
monomorphism i : R — F of the exact sequence (3).

The free group F acts on its subgroup R by inner automorphisms. This
action, denoted in [1] by Z: F — Aut R, is defined using both alphabets, X and
Y, as

E'(:c):( y_l)’:cEX,yEY. (14)
ZYy

xr
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TABLE I
The factor system p : @ x ) — IR, expressed in terms
of the alphabet Y of the subgroup R <1 F. Trivial entries
p(q, E) = p(E,q) = ep, q € Dy, arc omitted.

Ug Uy Uy
Ug Y1 (3 n
Uy Y3 Y2 Y3yYs
Uy Y4 Ys Yay2
TABLE III

The action =': F — Aut R (c[. Eq. (14)). Entries of
the table are zyz~! written in the alphabet Y.

)1 Y2 Y3 Y4 Us
1| Y1 | Ys yayr ! Y1Y3 Y1yoyr
Ty | ysya | Y2 | vouslust | wsusmays | ysusys

Table I1I describes this action by expressing each zyz~! in terms of the alphabet Y.

All the above results, i.e. the alphabet Y of the group R of all relations of
the group @, the factor system p : Q@ x @ — R, and the action £ : FF — Aut R,
are determined by the active group @ of the exact sequence (4). Further steps of
the Mac Lane method involve also the passive group T. They will be considered
in the next chapters.

3. Operator homomorphisms and two-cocycles

Construction of the group Homp (R, T) of all operator homomorphisms from
the kernel R of the epimorphism M : F — @ to the group T (which is the kernel
of the epimorphism w : G — @) starts from the manifold

TV = {p:Y - T} = om(R, T) (15)
of all mappings from the alphabet Y of the group R into the group T'. Clearly,
each such mapping generates a single homomorphism, therefore, in particular,

[om(R, Co)| = 2° = 32. (16)
In general, the set (15) is the main subject of combinatorial enumeration theory
[14], and its members can be arranged into orbits of some permutation groups,
acting on T and Y [15, 16]. Ilere, the size of the manifold CY is so small that we
do not specify any classification of its elements.

We have to select from the manifold 7V the submanifold of all operator
homomorphisms, i.e. such mappings whicl intertwine the actions = : F — Aut R
and A : Q — Aut T. They have to satisfy the conditions

oleyz™!) = M(2z)p(y), z€X, yeY (17)



Mac Lane Method for Delerminalion of Exlensions ... Part II 399

- TABLE 1V
Conditions (17) for operator homomorphisms ¢:R—T. Alphabets X and Y

classify respectively the columns and the rows of the table. The left-hand side
of each entry is ¢(zyz~!) (in additive notation for the group T), whereas the
right-hand side is M(z)¢(y) (for the trivial action A of Dy in T).

% e(y1) = o(y1) o(ys) + (ya) = (1)
) ?(ys) = ¢(y2) e(y2) = ¢(y2)
ys | e(ya) — o(y1) = o(y3) o(y2) — ¢(ys) — ¢(y3) = v(ys)
ya | o(y1) + o(ys) = ¢(ya) e(y1) — (y2) + ¢(y3) + ¥(ys) = ¢(ya)
Ys e(y2) = p(ys) e(ys) = ¢(ys)

(cf. Table III). We rewrite these conditions in Table IV, where we assume the
trivial action of @ on 7. This table contains |X| . |¥| = 2 -5 = 10 conditions,
labelled by pairs (y,z), y € Y, z € X. Clearly, not all these conditions are
independent. Three of them, namely (y1, z1), (y2, z2), and (ys, z2), arc identities.
It is convenient to specify the group T before evaluating further conditions. We
assume here the additive notation for the group T' = C, i.e. we put 0 and 1 for E
and I, respectively, with addition modulo 2. Then the conditions (y2, 1), (¥s, £1),
and (ys, z3) yicld

o(y2) = ¢(ys), o (18)
(y3,21), (ya,z1) and (y1, z2) yield
e(y1) + ¢(ys) + ¢(ya) = 0, (19)

and the last condition (ys,z2) depends arithmetically on (18) and (19). Thus the
submanifold Homp(R,T) of TV is generated by three independent variables, e.g.
Y1, Y2, and ys, so that

|Homp(R, C2)| = 2° = 8. (20)

The list of all operator homomorphisms is given in Table V.
Each operator homomorphism ¢ € Homp(R, C?) yields a two-cocycle m :

Q x Q — C, given by

m(q1,q2) = ¢(pla1,92)), (41,92) € @7, | (21)

where p : @ x @ — Ris given by Table II. These two-cocycles are listed in Table VI.
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TABLE V

The group Homp(R,Cs) of operator homomorphisms. In
this case, the group is isomorphic with the second coho-
mology group H?2(D,, Cs).

12!
P2
¥3
P4
s
¥
p7
¥8

HHD—‘F—‘OOOoS

e =T = e e N

=T — B P

O O KRR O R ol

O o o ol%

TABLE VI

Factor systems m : @) X @ — C3, corresponding to operator homomorphisms
of Table V (in additive notation). Each system m is presented as the matrix
with the element m(qi1,¢2) in the ¢;-th row and gp-th column. Trivial factors
m(E,q) = m(q,E) = 0, ¢ € D,, are omitted. Rows and columns of matrices
of m’s are labelled consecutively by ug, uy, u,. The second cohomology group

H?(D,,C5) coincides with the set {my, ..

.,mg} of factor systems of this table

with the pointwise matrix addition modulo 2 as the group multiplication.

0
m = 0

0

0
0
0

0
0
0

mag =

my =

meg =

mg =

e e e

0
1
1

— _— O

O = =

0
0
0

0
1
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Each cocycle m defines an extension G through the Seitz formula. In order to
determine equivalency classcs, we proceed to evaluate two-coboundaries, which
are associated with crossed homomorphisms.

4. Crossed homomorphisms and the second cohomology group

The group
Zhm(FT)2TX = {y: X - T) (22)
of all crossed homomorphisms from F to T can be identified with the manifold of

all mappings from the alphabet X to 7. For the case of T' = Cb, we obtain four
crossed homomorphisms 71, ...,74, listed in Table VII. Using Eq. (12), it is easy

TABLE VII
The group Z4 ,/(F,C2) of all crossed
homomorphisms (in additive notation

for Cy).
L1 L2
7N 0 0
72 0 1
3 1 0
Y4 1 1

to evaluate that all restrictions y|g = 7 o v of these mappings to the subgroup
R <« F vanish identically, i.e. that

Zhom(F,Co)lr = Z}(F, C2)|r = {0} . (23)
Thus the group of restrictions of crossed homomorphisms is in our case trivial (the
action A in this case is trivial).

By virtue of Mac Lane theorem, the sccond cohomology group is equal to
that of operator homomorphisms, i.e.

}IZ(.DQ, Cz) = I’IOITIF(R, Cz) = {7711, ey 777-8} . (24)
Elements of the second cohomology group can be identified with factor systems
of Table VI, with the group multiplication defined as addition of corresponding
matrices modulo 2. It is an elementary Abelian group, with the unit element m;,
and all other elements of order 2.

5. Classes of extensions of Dy by C,

Each element m € H 2(D2, C:) yields the corresponding extension G of D,
by C», determined by the Seitz formula

(t1, @1){t2, g2) = {t1 + @tz + m(q1, 92), 0192) (25)
for multiplication in G. There are thus 8 classes of non-equivalent extensions, which
are listed in Table VIII. The trivial factor m; yields the elementary Abelian group
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TABLE VIII
Extension of Dy by Cl.
Factor system | Order of element Isomorphic group
Uy Uy U,

my 2 2 2 Cy x Cy x Cy & Doy,

ma 2 2 | 4 |Dz

ma 2 4 4 Cs x Cy

my 2 | 4 | 2 |DY

me 4 2 4 Cg X C4

me 4 2 2 i

my 4 4 2 Ci x Cy

ms 4 4 {. 4 | D4

of order 8, i.e.

G1=Cy x Ca x C2 = Doy, (26)
with all non-trivial elements of order 2. It is isomorphic with the crystallographic
point group Day. It also arises in quantum ficld thecory in the context of CPT
thecorem [10], as the simplest combination of discrete space and time inversions
with an internal symmetry of charge conjugation. We like to mention here that,
despite of the simple structure (26) of the group Gy, the appropriate Wigner—Racah
calculus suffers from some puzzles concerning proper conventions of phases (cf.
Chatterjec and Buckmaster [17] and references therein).

Tactor systems mga, ms and m7 yield extensions isomorphic with the Abelian
group C x Cy. They are mutually isomorphic, but not equivalent extensions. The
order of an element of the form (¢, uq), t € Cy, is either 2 for a single a = z,y, z,
or 4 for the two other a’s. These extensions differ mutually by the distinguished
element u, € Dy associaled with the twofold clement of G. It is denoted in Table
VIII by the superscript o at the symbol of tlie isomorphic group. '

Factor systems mg, my, and my correspond to dihedral groups D4 with the
fourfold axis associated respectively with «, y, and z. These extensions are thus
non-Abelian groups, each with two fourfold elements (¢, uq), t € Co, o fixed.

The factor system mg yields the double dihedral group Dj with the three
twofold axes ug, uy, and u, transformed into pairs {(t,us) |t € Cs} of fourfold
elements, written usually in a form {u,, @4}, a = z,y, z, with

fiq = Eug, (27)
where

E=(l,E) : (28)
is interpreted as the rotation of the angle 27 (around any axis) for spinors [18].
The double dihedral group D can be readily identified with the group of quater-
nions, playing an important role in description of rotations of solid bodies (cf.
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Altmann [19] for a fascinating history of puzzles accompanying the use of quater-
nions).

It is worthwhile to obscrve that various extensions of Do by C5 are non-
-isomorphic. There are four isomorphic classes of extensions. Two of them, namely
G1 and {G3,Gs,G7}, are Abelian, and the two other, Gg and {Ge,G4,G>} are
non-Abelian. These isomorphic classes can be nicely reflected in the isomorphism
between the second cohomology group H?(Da,C,), and the point group Dyy, as
given in Table IX. The table shows that extcnsions within an isomorphic class can
be labelled by indices o = z, y, 2 of the Cartesian coordinate system.

TABLE IX
The isomorphism between the point group Ds; and the second
cohomology group H?2(D,, Cs). Vertical lines separate isomorphic
classes of extensions of Dy by Cs.

Doy E O 0y 0, I Ug Uy Uy
H?(Dy,Cs) my me mqma | Mg ms ms my
Isomorphic class || Cy X Co X Cy | Cy x Cy D'z Dy

Isomorphic classes differ by the number of fourfold elements: 0, 4, 6, and
2 for Gy, {G3,Gs,Gr}, Gs, and {Gg, G4, G2}, respectively. Such a doubling, or,
more generally, multiplication of order of the element ¢ € @ in the coset Tg, of the
cxtension G has a known crystallographic interpretation in terms of screw axes or
glide planes with the associated fractional translations.

6. A comparison of Mac Lanc mecthod with an immediate application
of coliomology

Now we have demonstrated ihe application of Mac Lane method of classi-
ficalion and construction of all exiensions of the group Dy by Cs. In this section
we make some comparison of this method with an immediate adaptation of coho-
mology to this case.

The cohomology theory starts with the group

CQ(DQ,CQ) = {f : D2 X Dy — Cz} (29)
of all two-cochains. The order of this group is

|C?(Dq, Co)| = 244 = 65536. (30)
Each two-cochain f € C?(Ds, C») should satisly

|Do® =43 =64 (31)
associalivity conditions

(82)(a1,92,93) = 0, (q1,92,93) € D3, (32)

where 62 is the two-coboundary operator. We observe that the associated numerical
problem is rather large even in such a simple case. It increases exponentially with
the increase either the active group @ or the passive group T
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After performing such a calculation one arrives at the group
ZZ(Dz,Cz) = {fECZ(Dz,Cz)[(ng:O} (33)

of all two-cocycles. The group classifies all extensions since each f € Z%(Ds, C»)
serves as a distinct factor system. All these extensions are different, but some of
them can be gauge equivalent. We thus need to find the group

BY(D,,C,) = {6'c|c € C(D2,Cs)} =Imé? (34)

of all two-coboundaries, which is a normal subgroup in Z2(D,, Cs). By the defini-
tion (34), it can be performed by an application of the one-coboundary operator
61 : CY(Dq, C2) — C?(D,, Cy) to the group

Cl(Dz, Cz) = {C : Dz - Cz} (35)

of all one-cochains c. C1(D3, C3) is the group of gauge transformations. Each gauge
transformation c¢ yields an equivalent extension.

TABLE X
The gauge group C'(D3,C3). Each entry is a gauge ¢ : Dy — C3. Each
column is a coset of the gauge group C*(Ds,C3) with respect to the
kernel Ker §! = Z(D,, C>) (the group of one-cocycles).

E u, uy u, | E up uy u, | E uy uy u, | E uy uy u,

0o 6 o 0y0 0 0 1|1 0 0 O0Oy1 0 0 1

o 6 1 170 0 1t Of1 0 1 11 0 1 O
61 0 10 1 0 0|1 1 0 191 1 0 O
o1 1 0f(6 1 1 141 1 1 0|1 1 1 1

The order of the gauge group is

|CH(Dy,Ca)| =2 =16 (36)

(cf. Table X). The two-coboundary 8¢ associated with a gauge ¢ € C1(Da, C») is
given by

(6%c)(a1, 42) = ¢(g1) + e(g2) — c(q142) (37
(since the action of D, in Cj is trivial). The kernel
ZY(Dy,Co) = Ker §* = {c € CY (D2, Cy)|6c =0} (38)

is a subgroup of C1(Da, Cy), given in the first column of Table X. It consists of all
such gauges which do not change any factor system. In our case, when the action
of Dy on Cj is trivial, each such a gauge defines a representation of the active
group D,, valued in the passive group Cy.
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TABLE XI

T!le. group B%(D,, C4) of all two-coboundaries. Each two-coboundary defines a
trivial factor system. Rows and columns of each matrix are labelled consecutively
by ¢ = E, uz, uy, u,.

0000\ 0000
=] 0000} foo0 11
000 0 0101
000 0) 0110
1111 1111
e | L1001
1010 1111
1001 111 1)

Equation (37) and Table X yield the group B?(D,, C») of all two-coboundaries
(one has to apply Eq. (37) to a single gauge ¢ for each column of Table X). This
group is given in Table XI. We obscrve that the two-coboundaries b; and by satisly
the defining condition

m(E,q) =m(q,E)=0,q € D, , (39)
for a normalized factor system, whereas b3 and by are unnormalized.

Thus the group B2?(D2,C3) can be casily evaluated merely from the coho-
mological definition. It is not the case for the group Z2(D,, Cs) of all two-cocyclcs,
where much more numerical effort is needed. Using the fact that the order of the
second cohomoly group is 8, we oblain

|Z2(Dz, Ca)| = |B¥(Da, Co)||IT*(D2, Ca)| =4 -8 = 32. (40)

Table XI implies that the factor systems of Table VI are not unique, but
they are given only modulo the group B%(D,, C5) of all two-coboundaries. Even if
we restrict ourselves to normalized factor systems (39), still each m of Table VI
can be substituted by a gauge-equivalent factor system

m' =m+ b,. ' (41)
Thus, e.g. the factor system mg of Table VI
1 01
mg=1 1101 . (42)
011
is gauge-equivalent to
110
my=]011]. (43)
1 01

In terms of the extension Gj, i.e. the double group D}, it means that the relations

UgUy = U, (44)
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and

Uguy = U, = Eu, (45)
for the double group DY are gauge-equivalent (cf. [20]). This arbitrarincss is nicely
reflected in the fibre structure of the extension Gg, where {u,,@,} € Dj forms the

fiber over u, € Dy, and each element of this fiber is equally good as the candidate
for (0, uz)(0, uy).
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