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HOW TO DISTINGUISH PERFECT
QUASI-CRYSTALS FROM TWINS AND OTHER

STRUCTURES USING DIFFRACTION
EXPERIMENTS?
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Performing diffraction experiments for various lengths of coherent scat-
tering and using the scaling of peak intensities on a number of atoms one
can experimentally distinguish quasi-crystals from the other structures (e.g.
twins or random). For perfect quasi-crystals peak intensities scałe as Ν 2 , for
other structures this scaling depends on concentration of atoms, behaving
critical for Penrose concentration.
PACS numbers: 61.10.-i

In this paper we compare different types of twodimensional stuctures
(Fig. 1) which give tenfold symmetry of calculated diffraction patterns [1, 2]. We
have studied several different stuctures which can be obtained by tiling the plane
without defects using only two types of Robinson triangles [1-3]. These structures
can generally be divided into four types: Penrose-like structures, twins, random
stuctures, and precipitated structures. For decoration of triangles two types of
atoms were used: primary (large) ones in the corners of the triangles and sec-
ondary (small) ones in positions inside the big triangles (one per triangle) [4]. The
structure factor was calculated for values of atomic form factors as equal to 1 for
large atoms and Ο for small atoms.

In order to obtain a Penrose-like tiling, one has to obey specific rules when
decorating the plane (the socalled matching rules [5]). These rules are rather easy
to obey when using the inflation method to generate a structure. In this method,
the Robinson triangles can be subdivided in the following way [1, 2]: each large
triangle gives two large triangles and a small one and each small triangle gives
one large and one small triangle. After subdivision, the resulting triangles are
similar to the Robinson triangles, but they are τ _ 1.618 times smaller. After
subdividing all the triangles the whole system is inflated τ times to recover the
original size of the building elements. The procedure can be applied infinitely many
times allowing a non-periodic covering of the whole plane with only two types of
triangles. Perfect quasi-crystals, called Penrose-like stuctures, have well-defined
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concentration of atoms (the critical concentration of small Robinson triangles is
equal to c = 1/τ 2) which is constant for a chosen decoration of unit blocks
(triangles) used for building of the structure.

Random and precipitated stuctures were generated using a computer pro-
gram simulating growth of a crystal seed by random attachment of Robinson tri-
angles under the strict condition of tiling the plane without defects [1, 2]. Random
structure shown in Fig. c has the concentration of small Robinson triangles equal
to 0.37, the concentration which is very close to the critical one (c - 0.3812).
The concentration for the precipitated stuctures from Fig. 1d is about 0.8 and it
is much higher than the critical one. This leads to the precipitations of crystalline
structures built up only with small Robinson triangles [1, 2]. Twins for different
concentration of small Robinson triangles were also analyzed.

Diffraction patterns for the different stuctures look very similar (Fig. 2).
The diffraction pattern for Penrose-like tiling contains sharp, single peaks, the
intensities of which are proportional to N2 as in classical crystallography. In the
case of the twin structure, groups of peaks are observed [1] instead of single peaks.
however, with increasing value of the scattering vector k the peaks in each group
overlap, giving a sharp intensity maximum at the Penrose position. For the random
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stucture there are always peaks at the Penrose positions, but their shapes are
rather complex.

As it was already shown [2, 4, 6, 7], diffraction patterns of the discussed
structures can be successfully analyzed in five dimensions. In this case the in-
tensities of peaks calculated at Penrose positions are well-approximated by the
Debye-Waller factor calculated for phason-space (perp-space) fluctuations. These
fluctuations are constant for Penrose-like filings and linear in number of atoms for
other stuctures. The slope coefficient of this relation depends linearly on deviation
from Penrose concentration, where it exhibits a singular point.

For stuctures with concentrations different than the critical one the normal-
ized peak intensities at Penrose-like positions are

where Ι is the peak intensity, Δc is the deviation of the concentration from the
critical one and N is the number of atoms. For a given series of peaks [1, 2]
variable A is proportional to square of the perp-space scattering vector or to one
over the square of real space scattering vector. The relation (1) means that the
peak intensity decreases exponentially with increasing number of atoms (Fig. 3b).
However, for a given number of atoms peak intensities increase with increasing
values of scattering vectors given by
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where n is an integer and values of k 0 for the first three series of peaks are con-
stant and equal to about: 2.9545, 5.9091, and-6.6065, respectively. Peak intensities
increase with n approaching 1 for higher values of scattering vectors.

Random Penrose-like tilings are obtained for random arrangement of unit
blocks at the critical concentration of atoms [1, 2]. For this concentration the
slope coefficient of the linear relation of mean square fluctuations versus number
of atoms vanishes and the logarithmic term begins to dominate, changing the
scaling of the peak intensities to

where η is a quadratic function of one over scattering vector given by (2). However,
the above equation is not valid for three-dimensional random quasi-crystals at
critical concentration [8].

The scaling of peak intensities at Penrose positions given by Eq.(2) distin-
guishes perfect quasi-crystals from all other structures. For Penrose-like structures
peak intensities scale as N 2 , for other twodimensional stuctures this scaling is
given by Eq. (1) or (3). This property of the diffraction pattern can be used for
experimental verification of the stucture. To do that, one has to measure diffrac-
tion patterns of a given stucture for different numbers N of coherently scattering
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atoms; their numbers depend on the length of coherent scattering in diffraction
experiments. If the relative peak intensities are constant for all such diffraction
patterns, the structure belongs to perfect quasi-crystals (or crystals). If not, the
defects or twins are present in the structure. Comparing the diffraction patterns
to the similar ones obtained for perfect crystals one can find the scaling of peak
intensities versus N, which allows to estimate the divergency of concentration from
the critical one.

Changing the length of coherent scattering is the most serious problem from
the experimental point of view. When synchrotron radiation is used one can mea-
sure the diffraction patterns for different volumes of irradiated sample or different
wavelengths. The absorption coefficient strongly depends on the wavelength of
the X-ray (especially near the absorption edge of the scattering elements), there-
fore the length of coherent scattering can be changed using different wavelengths.
Performing such experiment one can finally obtain the scaling of peak intensities
versus number of atoms. This information is a crucial one for distinguishing perfect
quasi-crystals from all other structures. For perfect quasi-crystals the relative in-
tensities do not depend on the number of atoms, therefore they should be constant
for all the wavelengths used in the experiment.
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