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GRAPHICAL REPRESENTATION
OF CORRELATIONS BETWEEN PEAK POSITIONS
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The properties of linear combinations of peak positions are analysed. It
is concluded that the distribution of combinations contains the information
on lattice constants. These combinations are represented by sharp maxima.
Examples of the distribution for a powder pattern of orthorhombic symmetry
are presented.

PACS numbers: 61.10.Wg

Numerical methods of solving powder patterns include some elements of a
trial-and-error procedure; application of any method becomes more and more dif-
ficult with decreasing symmetry, increasing unit-cell volume, increasing measure-
ment error and increasing presence of spurious peaks. The trial-and-error strategies
based on variation of Miller indices usually include search for certain correlations
between the peak positions. Using the term "correlation between peak positions"
we shall understand below the situation when a simple mathematical expression
(like a ratio, a difference or a linear combination) of these positions adopts some
special values, which may serve as a source of information about the unit cell. The
simplest correlations between peak positions (the ratios) enable the hexagonal
system to distinguish from the tetragonal one (see e.g. [1]).

The method worked out by Hesse and Lipson (see [1-4]) has been applied
to solve orthorhombic unit cells. The equation of the plane spacings for an or-
thorhombic crystal is

where q = d-2 , A = α' 2 , B = b-2 and C = c-2 . The method is based on the
recognition of the fact that if two peaks have the same k and 1 indices, but their
h indices are Ο and 1, respectively, the difference between their q values is equal
to A. The statistics of such differences may indicate the values of A, as well as B
and C.

The statistics of differences of positions of two peaks is rather poor especially
if the available experimental peaks are not numerous. However, the method may be
extended by taking linear combinations of N t peaks from among Ν experimental
peaks instead of the differences. Then any set composed of N t (Nt may become 2,
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3, ...) peaks produces a number of values (combinations), which may be treated
as the subject of further analysis. The allowed coefficients in the combinations are
small integers. It is convenient to consider the absolute value of the combination.

Let us consider an orthorhombic powder pattern composed of Ν peaks at
positions qi

The absolute value of the linear combination of a chosen set of qi values will be
denoted by x. For example all combinations of the peaks q1 , q2, q5 with coeffi-
cients m, n, p < M are given by x = |mq1 + nq2 + pq5 |, with m = 0,..., M; n =
—M, ... , M; p -M, ... , M. Due to the properties of Eq. (2) some values of x
may occur more frequently than the others. Therefore it is convenient to study
the distribution of linear combinations (DLC). The distribution of differences de-
scribed by Hesse and Lipson [1, 2] is a particular case of DLC. It may be expected
that higher accuracy of the data obtained with modern diffractometers and the
possibility of using fast computers could make such an approach a tool of analysis
of powder patterns.

The possible x values include:

etc. Let us consider three examples of peak triplets:
a) set (110), (011), (101);
b) set (110), (011), (111);
c) set (110), (111), (211).
The values of x for these sets obtained with the simplest choice of parameters
(M = 1, N = 3) are shown in Table. The content of the table illustrates the
reasons of the presence of mA, nB and pC values in the DLC pattern.

The observed maxima of DLC represent the correlations. The DLC pattern
for M = 2 (Fig. 1) differs from that for M = 3 (Fig. 2). Some of observed maxima
coincide with the positions of peaks of the powder pattern.

Usually, the distribution shows complex periodic behaviour (for example: the
maxima for A, 2A, 3A etc. are equidistant). The periodicity perfectness depends
on the pattern and on the number of peaks chosen for the analysis as well as
on the parameters of the algorithm. A short period is observed if there are some
arithmetic relations between two or three lattice constants. In the example shown
in the Figs. 1 and 2 the period equals 0.001578 [Α -2]; this value is exactly equal
to A/16, Β/3 and C/44.

The difference pattern (Fig. 1) shows strong maxima for both A and C
and a less pronounced maximum for Β. The DLC pattern (Fig. 2) contains more
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competing strong maxima than the difference pattern, but this kind of pattern has
the advantage to be less dependent on systematic absences and on the number of
available peaks. It is noteworthy that the peaks absent in the powder pattern have
their homologues in DLC pattern, e.g. the maxima marked by B and C correspond
to absent (010) and (001) peak, respectively.

The analysis of DLC patterns may facilitate the early stage of solving pow-
der patterns. However, some features of DLC patterns need further investigation,
among them:

— the optimum values of the algorithm parameters (M, N, Νt ),
— the choice of the method of finding the values of A, B and C, (graphical,

trial-and-error or Fourier methods may be applied),
— the possibility of application for lower symmetries.
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