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The principles of small-angle X-ray scattering are briefly reviewed with
emphasis on the particular advantages of the use of synchrotron radiation.
The application of the technique is illustrated by several examples concerning
precipitates in alloys, internal oxidation, porous materials, as well as the
structure of bone.
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1. Introduction

Small-angle scattering of X-rays (or neutrons) allows the study of structures
with sizes from 1 to 100 nm, and the applications range from biology to ma-
terials science. Traditionally, the technique has been applied to stuctural analysis
in two very different ways. The first, crystallographic small-angle diffraction, is
used to study the periodic arrangement of atoms, molecules, or groups of molecules.
In this case one has to interpret sharp Bragg peaks occurring at small scattering
angles. This technique, which relates to crystallography, shall not be discussed here.
The second way, which is the subject of this paper, consists in the interpretation of
the broad, diffuse small-angle scattering containing information on size, shape, and
orientation of inhomogeneities (like precipitates, pores, macromolecules in solution,
etc.) with sizes ranging from 1 to ≈100 nm. Such kind of information may, in
principle, also be obtained by electron microscopy. The advantage of small-angle
scattering is the fact that the obtained parameters (size, shape, orientation, etc.)
represent average values over macroscopic sample regions, whereas the advantage
of electron microscopy is the possibility to image individual objects.

Small-angle scattering has been introduced mainly by Guinier [1] and by
Kratky and Porod [2]. The principles of the method are reviewed in several text-
books [3-5]. In recent years, the availability of strong X-ray source as well as
position-sensitive detectors has increased the potential of the technique and with
the use of synchrotron radiation new applications (like, e.g., anomalous scattering,
time-resolved studies, three-dimensional reconstruction of anisotropic scattering)
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became possible. It is the aim of the present paper to briefly review the principles of
small-angle scattering with emphasis on these new possibilities using synchrotron
radiation. This will be complemented by several examples of recent investigations.
These examples are chosen with respect to the particular interest of the author and
are not representative for the whole spectrum of possible applications. For further
applications the reader might refer to recent reviews on the subject (biological
systems [6-9], polymer systems [10-12], anorganic material [13-16]).

2. Principles of small-angle scattering

2.I. Data collection

To show the typical setup for a small-angle scattering experiment, the beam-
line JUSIFA [17] at the synchrotron DESY in Hamburg is shown schematically in
Fig. 1. From the white synchrotron radiation, a monochromatic beam is selected
by a double-crystal monochromator. The beam is then collimated by a series of
pinholes and its intensity measured by a monitor counter before it hits the sample.
The X-ray intensity scattered in the sample under small angles θ is finally collected
in a two-dimensional position-sensitive detector (Fig. 1).

To account for the parasitic scattering from the pinholes, the measured X-ray
intensity is corrected in the following way [12]:

where T is the total intensity, P — the parasitic pinhole scattering (measured
without sample) and D — the dark current of the detector (measured without
X-ray beam). t is the transmission of the sample for the X-ray beam. Usually, the
X-ray intensity I is written as a function of the scattering vector k, the length of
k given by

where λ is the wavelength of the incident X-ray beam. The direction of k is defined
by the difference between the incident and the diffracted beam.
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2.2. General equations

The scattered X-ray intensity may be written in general [3-5]:

where f2 is the scattering factor of the atom at position rj and /0 — a factor
depending on the experimental setup. For an X-ray energy far enough from any
absorption edge the scattering factor of the atom is approximately equal to its
number of electrons. In an approximation frequently used in small-angle scattering
experiments, the twophase model [2-5], the sample is considered to be made of
two phases (a matrix and inclusions) with different average scattering factor and
separated by sharp interfaces. In this case, the diffuse intensity at small angles
writes approximately

where fA and fB are the average scattering faction of the phases A and B, and
J0 is a constant. (fA - fB)2 is sometimes called the "contrast" between the two
phases.

Equation (4) can be used to calculate the scattering pattern for a given shape
of the inclusion A. For example, calling kx, ky , k, the components of the vector k
into the three directions of space, one obtains for a parallelepiped of side-lengths
α, b, c [3-5]:

and for a cylinder with radius r and height h (directed along the z-axis) [3-51:

J1(x) being the Bessel function of the first kind. The scattering of a sphere of
radius r is, of course, isotropic and given by [3-5]:

2.3. Isotropic systems

In isotropic liquids, in polycrystals or when the inclusions are randomly
oriented the scattering intensity I(k) has spherical symmetry and does only depend
on the value k of the vector k. In this situation several general equations can be
given for the twophase model.

The first one is the Guinier law [3-5] derived under the assumption of
medium B containing isolated inclusions A with a distance between the inclusions
much larger than their size. In this case the intensity is approximately Gaussian
at small k and can be written [3]:

where R is the radius of gyration of the inclusions. For instance, if the inclusions
are spherical with a radius r, then R 2 = (3/5)r2 . Figure 2 shows the small-angle
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scattering from spherical inclusions (Eq. (7)). The Guinier law is widely used for
the determination of the average size of inclusions.

Where the distance between precipitates is not large enough, interference
effects between precipitates cannot be neglected and the Guinier law is not valid
anymore. Nevertheless, an evaluation using Eq. (8) in many cases still gives the
right order of magnitude for the average inclusion size [18]. Although a general
equation cannot be given for the scattering from densely packed inclusions, there
are expressions for several special cases. One such expression will be discussed
later in Sec. 3.2. In the case where identical, randomly oriented inclusions are
distributed in a matrix, the intensity writes [3-5]:

where K0 is a constant, F(k) is the form factor of a single inclusion (e.g. calculated
via Eq. (4) with A taken to be the inclusion) and cj are the center positions of
the inclusions.

In the cases where (isolated) inclusions have some variation in size, this poly-
dispersity must be taken into account by averaging the form factor F(k) over the
different inclusion sizes. Equation (9) then, in general, does not remain valid. In
the case of spherical inclusions (see Fig. 2), the effect of averaging over different
radii has the effect of gradually wiping out the oscillations of the form factor. This
is shown later for an example of spherical precipitates in a metal alloy. For system
containing only spherical inclusions (for instance colloidal dispersions [19]), math-
ematical procedures are available to extract the size distribution of the spheres
from small-angle scattering data [20, 21].
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Another general equation is Porod's law [3-5], which does not require the
hypothesis of isolated inclusions. Starting from Eq. (4), the scattering intensity at
large values of k becomes [2-5]:

where S is the total surface in between the two phases A and B. An example for
spherical inclusions is shown in Fig. 2. Porod's law may be used to determine the
internal surface of, e.g., porous material or catalysts [15].

In cases where a smooth internal surface cannot be defined because the
structure has a fractal character [15], small-angle scattering is able to give the
fractal dimension of the system. The essential property of fractal system is that
they appear identical on any scale of magnification at least between a lower and a
larger limit of scale. Physically, such a structure can be expected, e.g., for rough
surfaces or randomly porous material. A recent review of small-angle scattering
from fractal systems can be found in [15]. The only property to be mentioned here
is that the self-similarity of the fractal stucture leads to a power-law behaviour
of the intensity in the form

where H0 is a constant, α = DM for a mass fractal with dimension DM and
α = 6 - DF for a surface fractal with dimension DF. Note that for a smooth
internal surface DF = 2 and Eq. (11) reduces to Porod's law (10).

2.4. Anisotropic systems

Anisotropic inclusions produce anisotropic small-angle scattering as illus-
trated schematically in Fig. 3. Due to the fact that the shape of any object relates to

its scattering pattern by a Fourier transformation (Eq. (4)), the dimensions of the
object in Fig. 3 correspond roughly to the inverse dimensions of the scattering pat-
tern. Therefore, if non-spherical inclusions are distributed with a well-defined ori-
entation inside a matrix, their shape size and orientation can be deduced from their
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three-dimensional scattering pattern. Each measurement with the twodimensional
detector is just a planar section through this three-dimensional scattering pattern
which can, therefore, be reconstucted by a series of measurements with various
angles between the sample and the incoming X-ray beam.

After Fig. 3, the typical scattering pattern to be expected from oriented
plane-shaped inclusions (e.g. precipitates in a single crystal) will be a streak in re-
ciprocal space. To illustrate this, platelike inclusions (approximated by cylinders
with diameter d and height h < d) are supposed to be distributed on (111)-planes
of a cubic crystal. The scattering is then given by Eq. (6), where the z-direction is
chosen to be the [111)-direction of the crystal. As in a cubic crystal there are four
[111)-directions, the total scattering will be the sum of four terms calculated by
Eq. (6), each with the z-direction parallel to one of the [111)-directions. In the ex-

ample shown in Fig. 4, the crystal is oriented with its (110)-plane perpendicular to
the incoming X-ray beam. The X-ray pattern was calculated for four different as-
pect ratios hid. The scattering patterns are elongated into the two [111)-directions
contained in this (110)-plane. One can clearly see that with decreasing aspect ratio
hid, the streaks become sharper. In fact, the length of the streaks relates to 1/h
and the width to 1/d. Anisotropic spectra from single crystals can, therefore, be
used to determine shape, size, and orientation of the inclusions.

Finally, one can see in Fig. 4 oscillations of the X-ray intensity along the
direction of the streaks. These have a similar origin as the oscillations in Fig. 2
and are wiped out as soon as the inclusions have some distribution in size.
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2.5. Anomalous scattering

A particular advantage of the synchrotron X-ray beam is the fact that the
energy E of the incoming beam can be varied continuously. This allows to take
advantage of the anomalous dispersion [22-26] of the atomic scattering factor f
(entering Eq. (3)) close to absorption edges. Usually one writes

where Z is the atomic number and the dispersion terms f' and f" are tabulated
as functions of E [27].

In the twophase model (Eq. (4)), the variation of the scattering faction
change8 the contrast (fA — fB ) 2 , which may be either enhanced or reduced by the
right choice of E. The particular advantage of contrast variation is the possibility
to separate the different contributions in systems that contain more than two
components like, e.g., multicomponent alloys [25, 26] or complex molecules [22, 23],
by measuring the small-angle scattering at several X-ray energies E. An example
of a binary alloy with surface defects (= the third component) is shown later in
Sec. 3.1.

3. Examples

3.1. Spherical precipitates in dilute Cu-Fe

The solubility of iron copper decreases strongly with temperature. When
a sample of Cu1-xFex (with x = 1 at%) is quenched from 1000°C and subse-
quently annealed at temperatures between 300 and 700°C, one observes the for-
mation of almost spherical γ-precipitates, which can be studied by small-angle
scattering [28, 29]. In this case, a large contribution from crystal defects (e.g.
at the macroscopic surface) is superimposed on the X-ray scattering from the
Fe-precipitates. These two contributions can be separated using anomalous scat-
tering. Indeed, the contrast (see Eq. (4)) between Cu-matrix and Fe-precipitates
is given by (fl u - fFe)2 and the contrast between matrix and crystal defects by
(x fCu + (1 - x)fFe) 2 . The first varies strongly in the vicinity of the Fe Kedge,
whereas the second stays practically constant. Figure 5 shows the X-ray inten-
sity 1(k) measured at two energies E of the X-ray beam, one close to and one
well below the Fe K-edge. At small k, where the scattering from crystal defects
dominates, the spectrum is practically independent of E, and at larger k, where
the scattering from the precipitates dominates, there is a marked change with E
(Fig. 5). After removal of the scattering from crystal defects, the small-angle
scattering is as plotted in Fig. 6 (reproduced from [29]). The broken line in Fig. 6
shows the spectum expected for spherical precipitates (see Fig. 2) and the full
line is obtained by averaging the broken line using a physically reasonable size
distribution [29] of the precipitates. As discussed in Sec. 2.3 the effect of polydis-
persity of the spheres is to wipe out the oscillations of the scattering function (see
Fig. 6). Moreover, the amount of precipitates is small enough that interference
effects between precipitates can be neglected in this case.
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3.2. Kinetics of phase separation

Small-angle scattering is a widely used method for the study of kinetics of
phase separation (like in alloys [14] or polymer systems [10]). One of the reasons is
that for binary systems, Eq. (3) is just the Fourier transform of the pair-correlation
function, which is a quantity well-accessible to theoretical treatments [30-32].
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Therefore, the evolution of 1(k) during a phase separation process can be theoret-
ically predicted under certain assumptions and directly compared to experiment
data.

The first prediction of this kind was Cahn's theory of spinodal decomposition
[33], designed to describe the early stages of a phase separation process. This
theory is based on a modified diffusion equation known as Cahn—Hillard equation
[34]:

where u is the concentration of B atoms in an A-B mixture, f' is the derivative of
the free energy density and M and K are constants. Noting that the small-angle
scattering intensity I is proportional to |u|2 (u being the Fourier transform of
u), the solutions of this equation may be used to predict the time-evolution of I.
Indeed, various approximate solutions of Eq. (13) have been obtained analytícally
[33, 35, 36] and numerically [37, 38] and the results were compared to experiment
data (for a recent review see [32]). The most prominent feature of 1(k) is the
appearance of an interference maximum at a position km (t) which shifts with
time This is shown in Fig. 7a for the model system Al-Zn-Mg (redrawn from
[39]).

In the late stages of phase separation, one frequently observes a time-scaling
behavior of the X-ray intensity at time t, I(k, t), in the form [40, 18, 30-32]:

where F is a function independent of time and km(t) and Im (t) = I(km (t), t)
are time-dependent constants. This time-scaling property is observed for many
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systems and in particular also for Al-Zn-Mg [41, 42]. Beside the time evolution
of I for the Al-Zn-Mg system (Fig. 7a), the same data were plotted (Fig. 7b)
on rescaled axes k/km (t) and I(k, t)/Im (t). All spectra fall onto the same graph
which represents the scaling function F(x). The time-scaling behavior (Eq. (14)),
therefore, means that the system looks the same at different times t when the
magnification is changed by a factor km (t).

The maximum in 1(k) (Fig. 7) clearly shows that interference effects be-
tween precipitates cannot be neglected, in general, for systems undergoing phase
separation. But Eq. (9), which accounts for interference effects of identical inclu-
sions, cannot be used, because the precipitates have no reason to be equal in size
throughout the sample. Nevertheless, it is possible, using heuristic arguments, to
give an analytic expression for the scaling function F(x) which accounts for the
interference effects in this special case [43, 44]:

where the constants α, b, c, d are explicitly defined and depend only on the phase di-
agram [43]. Measurements of F(x) for different Al1-xAgx  alloys [45] are compared
to Eq. (15) in Fig. 8. Equation (15) is, however, only valid when the reduction of

surface between matrix and precipitates is the driving force for precipitate coars-
ening [44]. When, e.g., elastic interaction between precipitates is important, then
Eq. (15) is no longer valid [46].
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3.3. Internal oxidation

The formation of internal oxide precipitates can occur, e.g., in pure silicon,
due to a small amount of dissolved oxygen. This has been shown by (neutron)
small-angle scattering to give cushion-shaped precipitates [47]. This evidence was
obtained by interpreting spectra similar to Fig. 4 obtained with single crystals
[47].

The formation of oxide precipitates does also occur when an alloy of two
elements with very different affinities to oxygen (like copper and iron) is heated up
in an oxygen atmosphere. Internally oxidized single crystals of Cu-1 at% Fe were
investigated by means of synchrotron small-angle scattering [48]. Figure 9 shows

the scattering pattern when the crystal is placed with its (110)-plane perpendicular
to the X-ray beam. One observes a starlike feature with branches into [111] and
[001] directions (compare to Fig. 4). Combining this result with measurements
in other crystallographic planes, it can be established that the crystal contains
two types of oxide plates located on (111)- and on (001)-planes of the cooper
lattice. An analysis of the data in terms of Eq. (5) (analyzing the length and the
thickness of the streaks, see Fig. 4) allows then to determine the average size of
the precipitates [48].

3.4. Porous amorphous substances

This section briefly summarizes the results presented in [49] in order to show
possible applications of Eq. (11) and of Eq. (15). For a recent review of small-angle
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scattering from porous systems see [15]. Figures 10 and 11 show the small-angle
scattering from porous vycor glass and from glassy carbon on double-logarithmic
scales. The first material was produced by quenching a melt undergoing a phase
separation and by subsequently leaching out one of the phases. The second material
consists of entangled carbon ribbons. Both spectra exhibit a straight portion in
the double-logarithmic plot (Figs. 10 and 11). According to Eq. (11), the slope of
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this straight line is just 6 minus the fractal dimension of the material considered as
surface fractal. One obtains a dimension of 2.25 for the porous vycor glass (Fig. 10)
and 2.8 for the glassy carbon (Fig. 11).

A very different situation can be seen in Fig. 12, which shows the scattering
from amorphous silicon irradiated with heavy ions [50]. The scattering signal arises
from voids growing during the irradiation process. A fit of the data with Eq. (15)
(full lines in Fig. 12) allowed the determination of the total volume of the voids,
which compared well to the macroscopic density [49, 50].

3.5. Mineral crystals in bone

Bone is a composite material which is made essentially of long organic fibers
— collagen — and calcium-phosphate mineral embedded in the collagen fibrils.
As the mineral crystals are very small (a few nanometers thick), small-angle scat-
tering is well-suited to study the size, shape and arrangement of these crystals in
bone [51, 52, 15]. The protocollagen molecules are very long triple helices grouped
together in fibrils. A collagen fibril containing mineral crystals is shown schemati-
cally in Fig. 13. Figure 14 shows the scattering from mineralized turkey leg tendon
(reproduced from [52]), which is a bone-like tissue where the collagen fibrils are
highly oriented. In Fig. 14 one recognizes a series of maxima on a vertical line due
to the periodic arrangement of the molecules in the collagen fibrils (see Fig. 13).
In the plane normal to this direction (the horizontal in the picture) there is a
strong small-angle scattering signal (Fig. 14) from the elongated mineral crystals
(Fig. 13). The data in Fig. 14 therefore allow the determination of the thickness
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and simultaneously the orientation of the mineral crystals. These are quite impor-
tant parameters which are very difficult to obtain by other means [52].
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Figure 15, finally, shows the evolution of the crystal orientation with age for
the ulna of a mouse [51]. For the adult animal (Fig. 15c), the crystals are oriented
along the main axis of the bone, which give the bone a good mechanical stability.
It s interesting to note that this preferential orientation does not exist in the bone
of embroyos (Fig. 15a) and develops immediately after birth (Fig. 15b), as soon
as the mechanical stress becomes important [51].
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