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Information on phase relationships between Bragg reflections can be
obtained by the interference of Bragg waves. In the three-beam case, phase
difference is given by a structure invariant triplet phase relationship. The
intensity variation due to the three-beam interaction can be best measured
by a ψ-scan experiment. The resulting ψ-scan diffraction proflles scanning
through a three-beam position uniquely depend on the triplet phase rela-
tionship involved. In principle each three-beam profile is given by a super-
position of a symmetrical phase-independent and a phase-dependent profile.
Thus, triplet phases can be determined experimentally with an accuracy
of about 45 degrees. The ψ-scan method is discussed and some examples
of applications to the determination of the absolute structure as well as to
the structure determination by combination of measured triplet phases with
direct methods are given.

PACS numbers: 61.10.Dp

1. Introduction

In every textbook about X-ray structure analysis one can read sentences like
this: If the phases of the stucture faction are known, then the crystal stucture is
known, for one can compute the electron density p(r) by the Fourier summation

However, the trouble is the lack of the detection to be sensitive for phases, which
means that only the moduli of the structure amplitudes |F(h) can be derived
from the measured intensities and their phases φ(h) are unknown. These facts are
called the "phase problem of crystallography".

In order to get experimental information on the phases of diffracted waves
the only thing would be to carry out an interference experiment. For instance,
superimposing two coherent waves with amplitudes Α1 and Α2 and phases α1 and
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α2 the resultant intensity Ires depends on the amplitudes of the individual waves
and on their phase difference

This is the principle of interferometry and holography.
Interference of several coherent diffracted waves inside a crystal can be

achieved with a socalled multiple-beam case. N-beam multiple diffraction oc-
curs when N — 1 sets of lattice planes are simultaneously brought into position to
diffract the incident beam, i.e. N — 1 sets of lattice planes simultaneously satisfy
Bragg,s diffraction condition. In other words, N reciprocal lattice points, includ-
ing the origin, are simultaneously on the surface of the Ewald sphere. Then all the
diffracted wave fields interact with each other due to the fact that all the difference
vection of the reciprocal lattice hi - ħ; of the excited Bragg waves terminate on
the Ewald sphere. Interference effects change the intensity of each Bragg reflection.
It is this intensity variation which gives the phase information.

Already in 1949 Lipscomb [1] and at the same time Fankuchen suggested to
use the three-beam case for experimental phase determination. But no experimen-
tal results were reported. At the end of the 70,s and in the 80,s the feasibility of
this method was shown by several authors (references can be found in the review
article of Chang [2]). For understanding the interaction between the diffracted
waves inside the crystal, the dynamical theory for multiple X-ray diffraction must
be used. For basic discussions we shall concentrate in this article on the three-beam
case. We will give a brief survey of the dynamical theory for three-beam diffrac-
tion. The solution of the fundamental dynamical equations will be discussed with
few mathematical and mostly physical arguments.

A systematically experimental way of generating multiple diffraction is an
azimuthal scan, a socalled ψ-scan, around a scattering vector which is first aligned
for reflection (primary reflection), i.e. it terminates on the Ewald sphere. By rotat-
ing the crystal in that way additional reciprocal lattice points can be brought on
the Ewald sphere (secondary reflections). Thus, multiple diffraction is generated.
If exactly one additional secondary reflection is excited then a three-beam case is
generated.

2. Three -beam interference

This case is represented schematically in Fig. 1. Figure 1a shows the three-
-beam diffraction in crystal space, Fig. 1b — in reciprocal space (Ewald con-
struction). The incident beam is diffracted at the lattice planes denoted by their
reciprocal lattice vector h and simultaneously at the lattice planes g. Thus, three
strong waves are excited in the crystal: the incident wave and the two Bragg re-
flections ħ and g. If we look, for example, for the waves propagated in the direction
of the h-reflection, denoted by K(h), then a superposition of two waves occurs:
first, the directly diffracted wave at the lattice planes h and second, a socalled
Umweg-wave, which is twice reflected at the lattice planes g and once more at the
lattice planes ħ-g into the direction of the h-reflection. These lattice planes h—g
must exist, since ħ-g is also a vector of the reciprocal lattice (see Fig. 1b). ±(ħ-g)
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couples the h- and the g-reflection. However, let us neglect for a moment that the
h-reflection is also diffracted into the g-reflection by g—h. Generally speaking, the
wave vectors of the three beams do not lie in one plane as it is drawn in Fig. 1 for
the sake of simplicity.

Renninger [3] has already proven experimentally that such an Umweg-wave
must exist. He observed the intensity of the forbidden (222)-reflection of diamond
during a ψ-scan around (222). Each time when a second reciprocal lattice point
passed the Ewald sphere more or less strong diffracted intensity was measured, oth-
erwise the intensity was very weak. Renninger called this effect Umweg-Anregung
(Umweg excitation).

What is the phase difference between the primary reflection and the Umweg-
-reflection, which governs the resultant intensity due to interference (cf. Eq. (2))?
The primary h-reflection has the phase φ(h) due to the phase of its stucture factor
F(h). The Umweg-wave has the phase φ(g) + φ(h - g) due to the stucture factor
product F(g)F(h — g) because it is twice diffracted at the corresponding lattice
planes. Thus, the phase difference is given by

In the absence of anomalous dispersion effects Eq. (3a) can be rewritten

Φ3(h, g) isa socalled triplet phase relationship.
As we shall see in the next Section, the dynamical theory of multiple-beam

diffraction gives an additional phase shift, since in that regime Bragg reflection
must be regarded as a spatial resonance phenomenon. Therefore, we must take a
look at the dynamical theory for three-beam interference in order to understand
the intensity variations during a ψ-scan scanning through a three-beam diffraction
position.

3. Three-beam dynamical theory

The fundamental equations of the dynamical theory (5) are the solution of
Maxwell,s equations taking into account that the dielectric susceptibility has to
be taken as translationally symmetric because of the short wavelength of X-rays
in the order of atomic solution. Thus, all the wave fields show also translational
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symmetry and they have to be expanded in Fourier (Bloch) sums over all reciprocal
lattice vectors. For example, the dielectric displacement D is given by

where n are the reciprocal lattice vectors. Analogous sums must be taken for the
magnetic and electric field.

Substituting these sums into Maxwell's equations one gets the fundamental
equations of dynamical theory [4]:

X(n) = ΓF(n); n, m run over all the reciprocal lattice vectors. D(n) denotes
the dielectric displacement of the wave field due to scattering vector n. Dn(m)
stands for the projection of D(m) on D(n), both are always perpendicular to
their wave vectors K(n) and K(m), respectively. F(n) is the stucture factor.
Γ = (e 2 /me c2 )(λ20/πVc), where me — electron mass, VV — volume of the unit
cell, is a small number of the order of 10 -7 and gives the strength of the coupling
between X-ray and electrons in the framework of Thomson's scattering theory.

The physical content of Eq. (5) can be described as follows. Each wave
field D(m) scatters part of its amplitude into the wave field D(n) caused by the
diffraction at the lattice planes n-m. The strength of the interaction between
D(m) and D(n) is given by ΓF(n — m). The resultant amplitude of the wave
field D(n) is given by the interference of contributions Dn (m) of all excited wave
fields D(m).

The excitation strength of the different wave fields D(n) is governed by the
excitation error (Resonanzfehlerl

λ0, λ are the wavelengths of vacuum and medium (crystal), respectively. This
means that only such wave fields are strongly excited and have to be taken into
account, which fulfil Bragg's law. Then the length of the wave vector K(n) is
equal to the radius of the Ewald sphere K and R(n) has its maximum value. R(n)
decreases with the distance of the end point of n and K(n) from the Ewald sphere,
since K(n)=K+n.

This is the reason why it is allowed to cut off the infinite number of fun-
damental equations to three equations in the three-beam case, when only three
strong waves D(0), D(h) and D(g) are simultaneously excited.

To make things simpler, for the calculation of the amplitude of the primary
reflection D(h), we set all the scalar products, which take into account the projec-
tion Dn (m), equal to one. Therefore, we neglect the coupling between the π and
σ polarization components of each wave field [5] and we are left with the following
simplified system of equations for the three-beam case:
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To solve these equations for the ratio D(h)/D(0) the Bethe approximation is
employed. This means the amplitude of D(g) is expressed in terms of D(0) and
D(h) using the third equation of (7). Substituting in the second equation of (7),
for instance, and solving for D(h)/D(0) we get

This result can be interpreted as follows. The amplitude in the two-beam case,
i.e. no secondary reflections are excited, given by D2 (h)/D(0) = R(h)ΓF(h) (first
term of (8)) is modified by higher-order terms due to excitation of other reflections
(second term of (8)). Obviously, if R(h) is negligibly small, i.e. Bragg`s 1aw for the
h-reflection is not fulfilled, then no intensity can be observed in the direction of
K(h). This is also true, even though other wave fields are excited by carrying
out a ψ-scan around h, so that other reciprocal lattice points must pass through
the Ewald sphere. In this case Bragg's law for the scattering of the secondary
g-reflection into the h-reflection is not fulfilled, because the end points of the
coupling vector h—g does not terminate on the Ewald sphere.

Thus, a strict prerequisite in order to observe the modification of the intensity
of the h-reflection by the additional excitation of other reflection is to keep h
precisely on the Ewald sphere during the ψ-scan.

In this case the primary h-reflection can be considered as a reference beam
modulated by the secondary reflection, i.e. the ψ-scan experiment generating mul-
tiple diffraction closely resembles holography. The interference contrast gives the
phase information. Therefore, the amplitude (intensity) of the primary h-reflection
is normalized and (8) is rewritten

Equations (8) and (9) confirm the considerations of Sec. 2. In the three-beam case
the wave field D(h) is given by a superposition of two waves: the directly diffracted
wave governed by the structure factor F(h) and the Umweg wave governed by
the product of stucture factors F(g)F(h - g). As can be seen from Eq. (9) (cf.
the [-]-term) the phase relationship which governs the interference of both waves
is given by Eq. (3).

As can further be seen from (8) and (9) the resonance term (excitation
error) R(g) governs the amplitude of the Umweg wave and causes an additional
phase shift by 180 deg during the ψ-scan. Let us discuss this point in more details
assuming that the ψ-scan is carried out in such a way that the end point of g
passes the Ewald sphere from inside to outside. At the beginning of the ψ-scan
when g terminates inside, it is |K(g)| < |Κ|,sinceK(g)= Κ+g(cf. Fig. 2a), i.e.
the denominator of R(g) is positive. When g approaches the Ewald sphere, R(g)
gets larger and larger since the denominator approaches to zero, i.e. the amplitude
of the Umweg wave increases. It has its maximum value when g exactly lies on the
Ewald sphere. When g leaves the Ewald sphere, the amplitude of the Umweg wave
decreases and R(g) has changed its sign, since |Κ(g)  | > | Κ| when g terminates
outside (cf. Fig. 2b). Changing its sign R(g) causes an additional phase shift by
180 deg. The behaviour of the amplitude and the phase shift of the Umweg wave
during the ψ-scan is depicted in Figs. 3a and 3b.



88 	 K. Hummer, W. Schwegle' E. Weckert

Thus, the total phase relationship between the primary reflection and the
Umweg reflection depends on  ψ and is given by

0 ≤ Δ(ψ) ≤ 180° for a ψ-rotation sense: inside→outside.
That is all we need to discuss the three-beam ψ-scan profiles for different

triplet phase relationships.

4. The ψ-scan profiles

4.1. Ideal profiles

As already discussed above, a basic requirement for multiple-beam ψ-scans
is that the end point of the primary scattering vector h remains exactly on the
surface of the Ewald sphere. Then the primary diffracted wave serves as a reference
wave which amplitude remains constant, if no secondary reflections are excited. It
is modulated by the Umweg waves due to the excitation of secondary reflections.
This modulation gives information on the triplet phase relationship in case of
three-beam diffraction.

As we have seen, it is absolutely necessary to know the rotation sense of the
ψ-scan experiment. To be clear we discuss the ψ-scan profiles in case of a rotation
sense when the secondary scattering vector g passes the Ewald sphere from inside
to outside. In the plots ψ = 0 gives the exact three-beam position: ψ < 0 means g
terminates inside and ψ > 0 means g terminates outside.
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Suppose the triplet phase of a three-beam case 0, ħ, g is zero: Φ3 = 0°.
Then, at the beginning of the ψ-scan Δ(ψ) = 0 and Φ^ot = 0. The amplitude of
the Umweg wave is very small and the two-beam intensity |D2(h)| 2 is observed.
Scanning towards the three-beam position the amplitude of the Umweg wave in-
creases. The primary wave and the Umweg wave interfere in a constructive way
which leads to an increase in the resultant amplitude of D(h). Thus, its intensity
is increased. Very near to the three-beam position Δ(ψ) shifts very rapidly from  0
to 180°, then Φ to = 180°. That means the interference becomes destuctive and
the intensity is decreased. At the end of the ψ-scan when the amplitude of the
Umweg wave gets smaller and smaller the two-beam intensity is observed again.
This ψ-scan profile for Φ3 = 0 is shown in Fig. 4a.

For Φ3 = 180 the ψ-scan profile is inversed with respect to ψ = 0 as shown in
Fig. 4d. This behaviour is explained as follows. At the beginning of the ψ-scan the
phase relationship between the interfering waves Φ^ot = Φ3 + Δ(ψ) = 180 + 0 =
180. Thus, increasing the amplitude of the Umweg wave by scanning towards the
three-beam position the resultant intensity is first decreased because of destructive
interference and then increased. Because, if g terminates outside the Ewald sphere
then in that case Φtot = 180 + 180 = 0 mod 360, which leads to constructive
interference.

It follows the explanation of the three-beam profiles for Φ3 = +90 or -90.
In the case of Φ3 = +90, Φtot shifts from 90 to 270 during the ψ-scan. At the
exact three-beam position Φtot = 90 + 90 = 180, since Δ(ψ) = 90 at ψ = 0 as
can be seen in Fig. 3b and at the same time the amplitude of the Umweg wave
has its maximum value. The result is a symmetrical profile around ψ = 0 caused
by destuctive interference, since cos Φ t ot is negative forΦ,totin the range between
90 and 270. In the case of Φ3 = -90, Φtot , shifts from +90 to —90. Since at the
exact three-beam position Φ tot = —90 + 90 = 0, a symmetrical profile is observed
where the two-beam intensity is increased because of constuctive interference,
since cos Φtot is positive for Φtot in the range between —90 and +90. Both cases
are depicted in Fig. 4b and 4c.
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The three-beam diffraction ψ-scan profiles for triplet phases of +45, +135,
—45 and -135 must be between both the profiles of 0 and 90, 90 and 180, 0 and
—90, -90 and 180, respectively. For example, the three-beam profile for +45 must
first show a slight increase (cos 45 > 0) and then a distinct decrease since in the
exact three-beam position (∆(ψ) = 90, Φtot = 135), when the amplitude of the
Umweg wave is highest, it results in a destuctive interference (cos 135 < 0). All
the ideal ψ-scan profiles are depicted schematically in Fig. 4a—d.

Hummer and Billy [5] explained the ideal  ψ-scan profiles due to three-beam
interference effects by means of phase-vector diagrams.

4.2. Profiles with Umweganregung and Aufhellung effects

These ideal profiles can only be observed if the amplitudes of the interfering
waves fulfil certain conditions. In general, the ψ-scan profiles consist of two parts:
a phase-dependent 'part (ideal profile) due to the interference effect which bears
the phase information and a symmetric phase-independent part due to the mean
energy flow in a three-beam case which must be either incoherently added in case
of Umweganregung effects or substracted in case of Aufhellung effects [6].

Remember the fundamental equation of interference (2). The first two terms
represent the incoherent addition of the intensities of each wave. The third term
represents the interference effect. If, for example, Α1 » Α2 then the interference
contrast is small compared to the phase independent intensity Α 21 + Α22.A similar
effect occurs if one of the h- or g-reflection is much more stronger or weaker than
the other.

Suppose the h-reflection is very weak. This is similar to the original Ren-
ninger experiment [3]. Then, independent of the value of the triplet phase Φ3 ,

intensity of the g-reflection is coupled into the h-reflection via ħ-g. This would
lead to strong Umweganregung effects which give no phase information like in
the Renninger experiment. On the other hand, suppose the h-reflection is strong,
then intensity is coupled out off the h-reflection via g-h into the g-reflection.
This would lead to Aufhellung effects independent of the triplet phase. The ideal
profiles can only be observed when the energy flow between the h-reflection and
the g-reflection is well balanced, i.e. the same amount of energy is coupled out off
and coupled into the h-reflection and g-reflection, respectively. This energy flow is
governed by the law of conservation of energy. It can be described by a coupled
system of differential equations [7]. It depends only on the moduli of the stucture
factors involved in a three-beam case.

Existence of such Umweganregung and Aufhellung effects were proved theo-
retically and experimentally by Weckert and Hummer [6] and Hummer et al. [8]. A
theoretical example is shown in Fig. 5. The ψ-scan profiles are numerically calcu-
lated solving the fundamental equations of the three-beam dynamical theory where
the triplet phase involved is set to ±90 deg. The criterion whether Umweganregung
or Aufhellung occurs is the ratio Q = |F(g)F(h - g)|/ |F(h)| 2 . Ideal profiles occur
for Q 4 (Fig. 5a). The profiles in Fig. 5b were calculated increasing |F(g)| from
20 to 75 leaving the other stucture factor moduli constant, i.e. Q was increased
to 13. As a result strong Umweganregung effects occur, so that the destructive
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interference effect in case of +90 is overcompensated. But nevertheless, there is a
big difference between both profiles. The relative intensity change of the two-beam
intensity come to +28% for Φ3 = -90 and 6% for Φ3 = +90. This means that an
interference effect of ±11% is superimposed by an phase-independent Umwegan-
regung of +17%. The profiles in Fig. 5c were calculated decreasing F(g)| to 5,
i.e. Q 0.9, leaving all the other parameters constant. As a result strong Aufhel-
lung effects occur coming to -7.5%, the interference effect being ±1%. In the case
that the Umweganregung or Aufhellung effects are dominating compared to the
interference effect no phase information can be deduced.

Possible ψ-scan profiles are listed in Fig. 6. The profiles with Umweganre-
gung or Aufhellung effects are gained adding a phase-independent symmetrical
Umweganregung or Aufhellung profile to the ideal ψ-scan profiles. In Fig. 6 the
magnitude of the Umweganregung and Aufhellung effects are chosen in such a
way that the constructive or destructive interference effect is just compensated.
As already discussed above the phase-independent parts may even overcompen-
sate the interference effects (see Figs. 5b and 5c). This phase-independent part
can be experimentally evaluated by comparing the ψ-scan profiles of the two cen-
trosymmetrically related three-beam cases 0/h/g and 0/-h/-g where the struc-
ture factor moduli remain constant, i.e. the phase-independent parts are equally
strong. However, the signs of the stucture factors are reversed for both cases and
therefore the sign of the triplet phase involved is also reversed.

It can be seen that in these cases phase determination is possible with an
accuracy of about 45 deg since all the ψ-scan profiles show significant differences.
Moreover, also the sign of the triplet phases of non-centrosymmetric structures can
be determined. This is extremely important for solving the enantiomorphy problem
in light atom structures where anomalous dispersion effects are very weak. By
determination of the sign of a triplet phase the absolute configuration is absolutely
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fixed. It should be pointed out that for our method no anomalous dispersion effects
are needed.

5. Experimental

5.1. The ψ-circle diffractometer

It is known that the angular width of the ψ-scan profiles is of the order of
some arc minutes. Moreover, the intensity change due to the three-beam interfer-
ence is only a few percent, when the moduli of the stucture factors involved have
approximately the same magnitude in order to avoid strong phase-independent
Umweganregung or Aufhellung effects. Therefore, the measurement of ψ-scan pro-
files requires high precision of the angular resolution and high accuracy of the
ψ-scan. In any case, any staggering motion of the primary scattering vector must
be avoided during the ψ-scan. That means, it must always be kept exactly on
the Ewald sphere. As to our experimental experience exact ψ-scans are difficult
to perform with an conventional four-circle diffractometer. Therefore, a special

ψ-circle diffractometer was constructed (Fig. 7). This instrumenthastwo perpen-

dicular circles denoted by a9 and v to move the detector. Four circles are available
to move the crystal. The first crystal axis ω is parallel to the first detector axis  s9
(ω - 29 relation). Perpendicular to the ω-axis a second axis for the ψ-rotation is
installed. This ψ-axis bears an Eulerian cradle with motions X and gyp. Thus an
arbitrary scattering vector h can be aligned with the ψ-axis and a ψ-scan can be
performed by moving only one axis, namely the ψ-axis.

With the circles δ and v the detector can be moved to any point on a hemi-
sphere above the horizontal plane defined by the incident beam and the ψ-axis. In
this way the ψ-angle of the exact three-beam position can be controlled measuring
the profile of the second Bragg reflection by means of a  ψ-scan. All circles are
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computer controlled and driven by stepper motors. The angular resolution is at
least 0.0010.

5.2. X-ray sources

The properties of the three-beam diffraction profiles make high demands not
only on the diffractometer, but also on the X-ray sources.

The measured ψ-scan intensity profiles near a three-beam position are given
by the convolution of the intrinsic three-beam profile which depends on the diffrac-
tion geometry and the moduli of the stucture factors involved, with the experi-
mental apparatus functions for divergence and wavelength bandwidth. Due to this
convolution the interference contrast is higher for smaller divergence and band-
width.

Another point which should be noticed is that even for a small molecule
structures the sequence of three-beam positions on the ψ-scale are very dense.
For example, Fig. 8 shows the dependence of ψ positions on the wavelength for
three-beam cases of L-asparagine monohydrate (volume of the unit cell 0.646 nm 3)
in a certain range. The thick straight line represents the three-beam case of interest

0/h/g: h = (2 -3 — 2), g = (0 —1 - 5). All the thin straight lines represent other
three-beam cases for the same primary reflection h, but which are not indexed. In
order to avoid overlapping of the first three-beam case with other ones a proper
wavelength must be chosen, so that that the angular distance on the ψ-scale is
at least 0.1 degree. For the example shown in Fig. 8 this would be the case for
λ = 0.173 nm. For smaller divergence overlap is less likely as the interference
profiles are less wide.

Therefore, for this type of experiments an X-ray source with high brilliance
and tunable wavelength is necessary.

5.2.1. Rotating anode

For our in-house experiments a Rigaku high brilliance rotating-anode gener-
ator is available. We use a point focus of 0.3 x 0.3 mm 2 effective size with 5.4 kW
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load on a copper target. The radiation is filtered by a 100 μm nickel foil (β filter),
hence the spectrum consists mainly of the Κα emission lines. An appropriate di-
vergence ( ~0.025°) is achieved by a focus to crystal distance of 1.2 m. Absorption
in air between focus and crystal is reduced by an evacuated pipe.

The advantages of the rotating anode is a nearly unlimited availability and
good beam stability. Disadvantages are the fixed wavelength and the relative low
intensity due to the long distance needed to get a low divergence.

5.2.2. Synchrotron radiation

The advantages of synchrotron radiation (SR) are tunability of the wave-
length and high brilliance. Most of our experiments were performed at HASYLAB
in Hamburg using SR from a bending magnet of storage ring DORIS unning at
an electron energy of 3.7 to 4.5 GeV. Monochromatization is done by a computer
controlled fixed-exit double crystal Ge(111) monochromator giving a bandwidth
of approximately 0.01%. We used wavelengths in the range from 0.07 to 0.25 nm.
The divergence at a photon energy of 8 keV is about 0.008 degree. The diffracted
intensity is about 100 times higher than the intensity from the rotating anode
setup described above.

Disadvantages are beam instabilities which affect the experiment seriously
and the limited amount of available beam time.

5.3. Crystals

The crystals we normally use for experimental phase determination were
non-cut with grown faces. The crystal dimensions vary from 0.1 to 0.4 mm. They
were bathed in the incident beam.

It should be pointed out that the crystals need not be ideally perfect. Most of
the crystals investigated showed some mosaicity, which can also be seen sometimes
in the three-beam profiles. The mosaicity can be measured from the width of the
two-beam profile with a highly collimated incident beam. As a ule, if the FWHH
of the two-beam profile exceeds 0.1 degree using SR (divergence approximately
0.01 degree) then the crystal cannot be used for phase determination. However,
most of the crystals show a mosaic distribution as shown in Fig. 15, i.e. they
consist of several larger mosaic blocks which can be very well resolved. Such types
of crystals can still be used for phase determination because the highly collimated
SR allows to excite only one of the blocks, which serves then as a very good quality
single crystal.

5.4. Experimental results

The theoretical results dicussed in the foregoing chapters were verified by
several hundreds of experimental profiles using the rotating anode equipment or
SR. In order to test the power of our method as a tool for quantitative triplet phase
determination, we made measurements with several organic non-centrosymmetric
small molecule structures with unit-cell volumes up to 3 nm 3 . The investigated
structures are listed in Table 1 of the paper [8]. The result is that triplet phases
can be experimentally determined from the three-beam diffraction profile with an



96 K. Hummer, W. Schwegle, E. Weckert

accuracy of about 45 degrees — which means they can be assigned to phase octants
with centres at 0 mod 45° — in spite of Aufhellung and Umweganregung effects,
provided that these phase-independent parts are not the dominant effects.

By visual evaluation nearly 95% triplet phases were determined correctly.
About 5% of the three-beam profiles showed irregularities incompatible with our
catalogue in Fig. 6.

The ψ-scan profiles shown in the following refer to socalled "in-out" ψ-scans,
i.e. for ψ < 0 the second reciprocal lattice vector g terminates inside the Ewald
sphere, for ψ > 0 it lies outside. ψ = 0 marks the three-beam position. In each
figure the indices of the primary h-reflection and the secondary g-reflection as well
as the triplet phase calculated from the known structure are given.

6. Applications

6.1. Determination of absolute structures

The term "absolute structure" [9, 10] has different meanings dependent on
the point group symmetry. It comprises the different ambiguities occuring for
non-centrosymmetric stuctures. For enantiomorphic groups, containing only pure
rotation axes, this ambiguity is called "absolute stucture" for chiral stuctures and
"absolute conformation" for achiral stuctures. For hemimorphic or polar point
groups the stucture has to be fixed with respect to the direction of the polar axis.
For point groups containing rotoinversions like 3 , 4 or 6 the stucture has to be
fixed with respect to an absolute assignment of the crystal axes.

The usual way to fix the absolute stucture is the exploitation of anomalous
dispersion effects. This can be done by refining an enantiomorph sensitive parame-
ter [11] or by measuring the intensity of selected Bijvoet–Friedel pairs. Difficulties
arise if there are only weak anomalous scatterers in the stucture (e.g. light atom
stuctures) or if the crystals have only very small size so that it is difficult to
obtain good statistic for the reflection intensities necessary to exploit anomalous
dispersion effects.

As pointed out above by three-beam diffraction also the sign of the triplet
phase, defining its modulus in the range between 0 and 180°, can be determined.
Since both absolute structures differ in the sign of their triplet phases the best se-
lection would be triplet phases near 90°. It should be mentioned that this method
works without using anomalous dispersion effects, therefore it can be used in par-
ticular for light atom stuctures.

In Figs. 9 and 10 two examples are shown where we had both enantiomorphic
forms available. The details about the structures are given in the figure captions.
For these light atom stuctures determination of the absolute structure by means
of anomalous dispersion effects would be difficult. It is obvious from the figures
that the same three-beam case for two different enantiomorphic forms gives exactly
the negative triplet phase. The noise in the profiles is mainly due to primary beam
instabilities of the synchrotron source and not statistics.

Another example is shown in Fig. 11, where it was not possible to determine
the absolute stucture by means of anomalous dispersion effects using copper ra-
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diation since the crystals were only available as very small needles. The mosaic
spread of these crystals was rather small, therefore experimental phase determi-
nation worked very well.

6.2. Future aspects: phase determination
of large structures and structure solution

Up to now most of the structures were solved by direct methods, which use
statistical evaluation of triplet phases. Meanwhile, stuctures with approximately
200 independent non-H atoms can be solved more or less routinely. However, dif-
ficulties arise for larger stuctures. Therefore, the question should be answered
whether it is possible to solve large structures by combination of measured triplet
phases with direct methods.

The first step into this direction is to test whether it is possible to measure
triplet phases of structures with large unit cell dimensions, where it is impossi-
ble to avoid overlapping of several three-beam cases. In preliminary experiments
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using small molecule stuctures we investigated the way in which ψ-scan profiles
of three-beam cases with strong structure faction are influenced by overlapping
three-beam reflections with weak stucture factors. The structure factor mod-
uli of the wanted three-beam cases were chosen to fulfil the following condition:
2 < Q(hg) < 6 with Q(hg) = F'(g)F'(h—g)/F'(h) 2 (F' are stucture factor mod-
uli corrected for polarization in case of using SR). It was found that in spite of
overlap of other weak three-beam reflections with respect to the same primary re-
flection the triplet phase of the wanted three-beam case can be exploited provided
that Q(hg)weak ≤ O.1Q(hg)strong . Thus, one can be confident that experimental
phase determination is also possible for large stuctures if the overlapping weak
three-beam reflections fulfil this condition.
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In Figs. 12 to 14 the first triplet phases measured in small proteins are
shown (see also [12]). In each of the diagrams about 200 to 300 weak three-beam
cases occur in a ψ-angular range of +/ - 0.1° with respect to the three-beam
position of the main three-beam case. In Fig. 15 the profile of a secondary reflection
during a ψ-scan is shown. The crystal quality was rather bad, but due to the small
divergence at the synchrotron we were able to select just one of the big mosaic
blocks to perform the experiment.

As the structure factor moduli of the wanted three-beam case have to be
strong in large stuctures, only the phases of low and medium resolution reflections
are accessible by experimetal phase determination.
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