Proceedings of the ISSSRNS '92, Jaszowiec 1992

EUROPEAN SYNCHROTRON RADIATION FACILITY

R. HAENSEL

ESRF, BP220, 38043 Grenoble Cedex, France

European Synchrotron Radiation Facility (ESRF) is the first representant of a new (the third) generation of synchrotron radiation sources delivering high brilliance radiation in the hard X-rays. The *first generation* sources were initially built as part of high-energy physics programs and used as synchrotron radiation sources in a parasitic mode. Some are still used this way, some are operated for both programs in a time-sharing mode while others have been totally converted into dedicated synchrotron radiation sources. The *second generation* sources are those which were exclusively designed as dedicated synchrotron radiation sources. They have emittances in the range of 100 nm rad. The main radiation sources are bending magnets, a few insertion devices may have been added. The *third* generation sources finally have a lower emittance (< 20 nm rad) and many long straight sections for a maximum of insertion devices.

In the following we give a short review of the history of the ESRF:

13 September 1976	1st meeting of a working group on "Synchrotron Radiation"				
	created by the European Science Foundation (ESF)				
	Chairman: H. Maier-Leibnitz				
December 1977	Black Book				
May 1979	Blue Book (Ed. Y. Farge)				
December 1982	Yellow Book (Ed. J. Als-Nielsen)				
October 1984	Green Book (Eds. B. Buras, S. Tazzari)				

April 1985	Decision on the site: Grenoble				
June 1985	1st meeting of the provisional ESRF Council				
December 1985	er 1985 Memorandum of Understanding concerning the Preparatory				
	Phase of the ESRE: France Germany Italy U.K. Spain				

(33)

R. Haensel

April 1986 January–June 1987 February 1987

July–December 1987 December 1987

January 1988 16 December 1988

February-September 1989

1 December 1989

April 1990

November 1990 12 November 1990

21 December 1990

January 1991

May 1991
September 1991

12 November 1991 9 December 1991

Start of work of the ESRF team 1st prolongation of the Preparatory Phase Red Book (Foundation Phase Report) submitted to the Council 2nd prolongation of the Preparatory Phase Protocol: France, Germany, Italy, U.K., Spain, Switzerland, and 4 Nordic countries (Denmark, Finland, Norway, Sweden) Start of construction Signing of Convention, Statutes and Final Act by France, Germany, Italy, U.K., Spain, Switzerland, Belgium and 4 Nordic countries (Denmark, Finland, Norway, Sweden) Execution of building construction contract A: Excavation, drainage and sewers Signing of building construction contract B: Machine utility buildings, storage ring tunnel, experimental hall, technical utility buildings Start of building construction; 60% of equipment for the accelerator ordered Start of installation of the Booster Synchrotron Foundation of a consortium BENESYNC aiming at the accession of the Netherlands to ESRF in the framework of a consortium with Belgium which was already contracting party of ESRF Signing of building construction contract C: central building (for laboratories and offices), joint ESRF/ILL building, landscaping Delivery of preinjector (linear accelerator); Experimental confirmation (by an ESRF team in collaboration with NSLS, Brookhaven) of the potential of cryo-cooled silicon single crystals to preserve the high brilliance of ESRF's X-ray beams First electron beam in the preinjector First electron beam (200 MeV) in the Booster Synchrotron Acceleration to 6 GeV

Accession of the Netherlands to the ESRF Convention The list of the Contracting Parties of the ESRF and their financial contributions to the construction/ /operation costs (in%) now reads as follows:

34

European Synchrotron Radiation Facility

France (33/27.5)Germany (23/25.5) Italy (14/15)United Kingdom (12/14) BENESYNC (Belgium, The Netherlands) (4/4) NORDSYNC (Denmark, Finland, Norway, Sweden) (4/4) Spain (4/4)Switzerland (4/4)28 February 1992 First electrons circulating in the storage ring 6 GeV (target value achieved); 100 mA in multi-bunch mode (target value achieved); 3 mA in single-bunch mode (target value: 7.5 mA); 2 hours lifetime at 100 mA (target value: 10 hours); 8 nm rad emittance at low intensity (target value: 7 nm rad for all intensities) 3 July, 1992 First X-rays from an undulator in the experimentall hall

The commissioning period of the source will finish before the end of 1992, i.e. 6 months earlier than initially foreseen in the Foundation Phase Report (1987).

The beamline program foresees 30 ESRF-Funded Beamlines. The main characteristics of the first 20 beamlines are given in the following Table. For a first set of (at least) 7 beamlines the commissioning period will start in 1993, users operation is foreseen to start in 1994.

TABLE

Light -1 under Deamines.					
	Beamline	Scientific goals	Source		
1.	Microfocus	Microdiffraction;	Undulator 0.8–3.0 Å		
		Small-angle scattering; High pressure			
2.	Multipole wiggler/	Small molecule crystallography;	Wiggler 4–60 keV		
	Materials science	Magnetic scattering			
3.	Multipole wiggler	Laue protein crystallography;	Wiggler 4–60 keV		
	White beam	High pressure ED;			
		Monochromatic option			
4.	High brilliance	Real time small-angle scattering;	Undulator λ tunable		
		Monochromatic macromolecular	around 1 Å		
		crystallography			
5.	High energy	Gamma-ray diffraction;	Wavelength shifter		
	X-ray scattering	Small-angle scattering;			
		Compton scattering			
6.	Circular	Dichroism in EXAFS, SEXAFS;	Helical undulator		
	polarization	Spin-dependent photoemission;	$E \leq 4 \; \mathrm{keV}$		
		Microscopy at 2.5 keV			

ESBE-Funded Beamlines

June 1992

35

R. Haensel

7.	Surface diffraction	Surface structural studies;	Undulator
		Phase transitions; Growth mechanisms;	$K_{\rm max} = 1.85$
		Liquid surface diffraction	
8.	Dispersive EXAFS	Time-resolved structural studies	Wiggler, or
			tapered undulator
9.	Undulator "open"	Multiple experimental station for test	Undulator
	beamline	experiments	
10.	Bending magnet	Test experiments	Bending magnet
11	Meashavan/	Nuclear Berger and the size of	II., J., J., A.,
11.	Wossbauer/	High resolution (5, 10 moV) in election	Undulator ~ 14 keV
	inclustic	agettoring at 0 5 aV apargu transfer	
	meiastic	Flootnonic and withoutional avoitations	
10	Agrommatnia	Magnetic contening	
12.	wiggler beamline	Magnetic scattering	Asymmetric wiggier
13.	Surface science	SEXAFS	Undulator
		and standing waves techniques	
14.	High-energy wiggler	Microtomography;	Wiggler
		possibly Angiography	
15.	Powder diffraction	Powder diffraction for structure	Bending magnet;
		determination	later undulator
16.	Wiggler long beamline	Topography	Multipole wiggler
	(75 m)	(possibly second Laue station)	
17.	Anomalous scattering	Anomalous scattering	Undulator 0.4–3 Å
		in materials science	
18.	EXAFS	2 EXAFS stations	Bending magnet
19.	Multiple wavelength	Multiple wavelength anomalous	Bending magnet
	anomalous diffraction	diffraction	
20.	Monochromatic	Macromolecular crystallography	Undulator
	macromolecular		
	crystallography		

Besides the 30 ESRF-Funded beamlines, mostly on insertion devices, there will be a number of beamlines on bending magnets, which are financed and operated by Collaborating Research Groups (CRG) from the member countries under special arrangement with ESRF.

36