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X-RAY OPTICS FOR SYNCHROTRON RADIATION
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This paper presents the main optical devices used to prepare a beam
from X-ray synchrotron source: monochromators, flat or curved in order to
intercept a larger angular divergence at the sample, mirrors and, finally,
optics for polarized X-ray experiments. Since X-ray optics is based either on
total reflection or on diffraction by perfect crystals, the basic fundamental
results of X-ray dynamical theory, which are necessary to understand the
reasons why one device should be chosen rather than the other, are also
presented.
PACS numbers: 61.10.Dp, 78.90.4 t

1. Introduction

Every 'optical" experiment, whatever its wavelength range is, consists of
three distinct parts: a source, an optical system to prepare the beam and a detector.
Here, the optical systems well-adapted to synchrotron sources will be discussed.

X-ray synchrotron sources main specific properties are:
— intense white spectrum, 	.
— small divergences but experiments are far from the source,
— specific polarization properties.

Most X-ray experiments require monochromatic waves with a more or less
small band-pass. The selected wavelength is either kept constant during the exper-
iments (diffraction experiments, small-angle scattering...) or scanned (extended
X-ray absorption fine structure or EXAFS, X-ray absorption near-edge structure
or XANES) and then a large part of this lecture will deal with monochromation
(Sec. 3).

Although synchrotron sources are very brilliant, one does not want to lose
too much photons and then wants a beam narrow enough to be fully intercepted
by the sample. The solution is then to focus the beam at the sample. If the focus
is small enough it becomes a point-like probe for spatial-resolved experiments.
Curved monochromation (Sec. 4) or curved mirrors (Sec. 5) are then used.

The content of Secs. 3 to 5 is detailed in several review papers [1-5].
Finally, the polarization properties of synchrotron sources give rise to a

rapidly growing field of research; i.e. the dependence of X-ray absorption spec-
tra on polarization, either linear or circular (Sec. 6).

(13)
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The necessary preparation of the beam is analogous to what has to be done
with visible light experiments but, due to the smallness of X-rays wavelengths,
the optical components which have to be designed are quite different. The most
important difference between visible light and X-rays concerns the index of re-
fraction which, for X-rays, is nearly equal to 1. It can be expressed as n = 1 - δ,
where δ is of the order of 10 -4 to 10-5 for most materials and then lenses do not
exist for X-rays. There are two ways to go around this difficulty. The index of
refraction being slightly less than 1, the phenomenon of total reflection occurs for
small enough glancing angles, typical a few tenths of a degree, and then one can
prepare mirrors which can be used to focus X-rays. The other important property
of X-rays is Bragg reflection by crystals which is used to select pure wavelengths.
The selected wavelength λ is given by Bragg's law

where dh,k,l is the spacing between the lattice planes of a given family (h, k,l),
normal to the reciprocal lattice vector h [h, k,l]*; θ is the angle between the incident
X-ray beam and the considered lattice planes and n is an integer. This equation
may also be written

which means that for a given value of θ, i.e. a given position of the crystal with
respect to the incident beam, not only wavelength λ' = nλ but also λ'/2, ... λ'/n
called the harmonics are reflected corresponding respectively to diffraction vection
h, 2h, ... nh as far as these reflections are not forbidden by the crystal stucture.
The narrowest selected band-pass is obtained with perfect crystals. In such perfect
crystals the optics is governed by X-ray dynamical theory whose main results need
to be recalled now.

2. Some results of X-ray dynamical theory

The classical kinematical theory of diffraction valid for ordinary crystals
relies on the assumption that the diffracted intensity is very low compared to the
incident intensity. This is no more valid in perfect crystals and one cannot treat
separately the incident and diffracted waves which are then coupled giving rise to
specific properties of diffraction.

For a given wavelength, a perfect crystal diffracts over a narrow angular
range of the order of the arc second which is determined by the width of the
socalled rocking curve (Fig. 1) which gives the reflecting power R(θ), ratio of
the diffracted to the incident intensity as a function of the angle of incidence of
the incident wave assumed to be a monochromatic plane wave. Before giving the
value of this width it is necessary to define some geometrical parameters involved
in Bragg diffraction. Figure 2 distinguishes between transmission or Laue case
and reflection or Bragg case. Most monochromation are used in Bragg geometry
and then, unless specified, Bragg geometry will be considered here. The angle
of asymmetry α is defined, in Bragg geometry, as the angle between the crystal
surface and the reflecting planes.
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For non-absorbing crystals the rocking curve (Fig. 1) presents a domain of
total reflection whose angular width is

is the asymmetry factor and ωs , which refers to the symmetric case and is called
the Darwin width, is such that

re is the classical radius of electron, V — the volume of the unit cell, Fh — the
stucture factor, e-M — the Debye-Waller factor which takes into account the
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thermal motion of the atoms in the crystal, C — the polarization factor equal to
1 or cos 2θ if the polarization vector is respectively perpendicular or parallel to
the diffraction plane hereafter preferably called scattering plane (in order not to
make any confusion with the diffracting or reflecting planes) defined as the plane
formed by the incident and diffracted directions.

Since ω0 varies as the square of dhkl, the widths of the different harmonics
decrease rapidly with the order of the harmonics (Fig. 3).

The middle of the domain of total reflection 00 is shifted from the Bragg
angle θB , defined by Eq. (2), by Δ60 = θ0 - θB = (1/2)(1 + 1/b)Δθ s , where
Δθs = (ω s /2)(F0/Fhe -M) is the shift for the symmetric case (Fig. 1).

For real crystals, absorption has to be taken into account and there is no
more total reflection but a domain of quasi-total reflection, the width of which is of
the order of ω0 . ω 0 is then commonly considered as the width of the rocking curve
or the domain of angular acceptance of the crystal for the considered reflection.
The divergence ωh of the reflected beam is such that (see Fig. 4):

If a white beam falls on a perfect crystal, the spectral band-pass depends on
the angular divergence of the beam. To determine this band-pass it is convenient to
introduce a graphic representation due to DuMond [6] which gives the correlation
between the direction θ of the incident wave in the scattering plane (abscissa) and
the wavelength λ (ordinate). Figure 5 shows the (θ, λ) domain of the incident beam
which is reflected when the angular divergence of the incident beam is equal to Ω.
For a symmetric reflection, the correlation between direction and wavelength in
the incident and diffracted beams are the same. When such a reflected beam falls
on a second crystal, two different settings have to be considered depending on the
sign of the angle between the incident and reflected beams on the two successive
crystals. If these signs are identical the setup is noted (+ , +), if they are different it
is noted (+ , -). Figures 6a and 6b show how the emerging domains are determined
in these two cases. The position of the first crystal with respect to the incident
beam determines the position of the beam diffracted by the first crystal (vertically
hatched area) with respect to curve 1 (λ =-2d 1 sin θ), i.e. the wavelength domain
issued from the first crystal. When the second crystal is rotated with respect to
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the first one, curve 2 is translated with respect to curve 1. In the (+, +) setup,
diffraction by crystal 2 takes place over an angular rotation roughly equal to the
divergence Ω of the incident beam. For each position of crystal 2, the wavelength
band-pass is small and the mean wavelength varies during the rotation: the setup
is dispersive. In the (+, -) setup and if the lattice parameters of both crystals are
exactly the same, curves 1 and 2 are parallel. The wavelength band-pass is larger
than in the dispersive setup but practically does not vary during the very small
rotation where diffraction takes place. Such a setup is a non-dispersive parallel
one.
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3. Flat crystal monochromators

In order to obtain a monochromatized beam whose direction does not depend
on the selected wavelength the simplest monochromator consists of two identical
and parallel crystals in the (+-, -) non-dispersive set-up which are turned together
when a wavelength scan is required as in EXAFS experiments for example.

If Rλ(θ) is the reflecting power for one reflection and a given wavelength,
the integrated emerging intensity is

where θ = θi - Ω/2, θ2 = θi + Ω/2, θ, being the mean angle of incidence and Ω
the angular divergence of the incident beam. The maximum intensity is obtained
if β is equal to zero and is then equal to

It is easily shown that the variation of I(λ) as a function of λ is related to
the convolution of the curve Rλ (θ, β = 0) by the intensity profile of the incident
beam I0 (θ), the variables θ and λ being related by Δλ/λ = Δθ cot θ. Then the
energy band width can be approximated by

where ω is the width of the curve Rλ(θ, β = 0), i.e. at a good approximation the
width ω0 of the rocking curve and Ω the angular width of the incident beam in
the diffracting plane.

It should be pointed out here that the tails of the rocking curve induce tails
in the curve I(λ). Successive reflections decrease tails in Rλ(θ) and then in I(λ).

Due to the narrow width of the rocking curves a slight misorientation β of
the two crystals decreases the width of Rλ(θ, β) (which can be useful in some
specific experiments) but decreases also the intensity of the emerging beam which
can even become null for a too large misorientation β. The same effect occurs for
a slight variation of parameter which can be induced for example by a difference
of temperature (as described below).

a) Channel-cut monochromators: the easiest solution to avoid misorientation
between the two crystals is to use an U-shaped monolithic crystal obtained by
cutting a slot in a single crystal. Then the emerging beam although parallel to the
incident beam is slightly shifted (Fig. 7a) which implies either to change the sample
position between two experiments at two different wavelengths or to have samples
large enough to intercept the beam over the considered shift, and homogeneous.
Furthermore, with second or third generation of synchrotron sources the thermal
load on the first part of the block induces a temperature difference and then
a variation of lattice parameters between the two parts which may cancel the
emerging intensity.

b) Two separated crystal-monochromators: if the two crystals are separated,
a fixed exit monochromatic beam can be obtained by means of a single axis rota-
tional stage and a device (for example a cam in [7]) which translates as necessary
the first or the second crystal.
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c) Four-crystal monochromation [8, 9]: the four crystals are identical and ad-
justed for the same reflections; the two first parallel crystals form a non-dispersive
pair which is arranged in a dispersive mode with respect to the two last parallel
crystals (Fig. 7b). In order to scan the wavelength the two pairs of crystals are
counter rotated of the same angle. The beam has a fixed exit and the energy res-
olution which does not depend on the divergence of the incident beam is better
than in cases (a) and (b). It can be approximated to

d) Very small band-pass monochromators. For some experiments like stand-
ing-wave experiments (XSW) or plane-wave topography or diffractometry the in-
cident beam must have a divergence smaller than the width of the rocking curve of
the investigated sample. The most common solution uses for the monochromator
and the sample a non-dispersive parallel setup; the width of the wave emerging
from the monochromator is reduced by designing a monochromator with successive
reflexions with either one asymmetric re flexion [1] or a slight detuning between two
symmetric reflexions [10]. These two setups permit also to eliminate the harmonics
(Fig. 8 taken from [1]).

Another possibility is to design a monolithic silicon crystal with three succes-
sive reflexions where the two first are in a dispersive (+m, +n) setup defining the
wavelength and the angular and spectral width and the two last ones are asym-
metric non-dispersive (+n, -n) reflections with different asymmetries in order to
suppress the harmonics and reduce again the angular and spectral width [11]. Such
a setup provides a beam with a very narrow angular and spectral width, but is
not tuneable.
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4. Curved crystal optics

4.1. Curved monochromators

Because of large distances between the synchrotron radiation source and the
experiments, condensing optics are useful to confine the beams to a small size at
the sample and to collect as much of the radiation as possible.

Two types of optics can be used based on either specular reflection (mirrors)
or Bragg diffraction (curved crystals). The second technique is first discussed here.

Two main types of bending devices were used (Fig. 9):
— the four-cylinder mechanism to bend rectangular plates [12-14],
— a triangular crystal whose basis is clamped and a screw-driven force is applied
to the apex [15, 16].

Let us suppose, as an example, that one wants to condense the horizontal
divergence. There are then two different cases depending on if the scattering plane
is vertical (the focusing is then "saggital", i.e. the curvature is perpendicular to the
scattering plane) or horizontal (the focusing is then "meridional", i.e. the curvature
is parallel to the scattering plane).

4.1.1. Saggital focusing

Let us consider a two-crystal monochromator whose first crystal is a flat
crystal diffracting in a vertical plane. This crystal and the vertical divergence
determine the wavelength resolution. Let us suppose first that the second crystal
is flat. The rays impinging the second crystal seem to come from a virtual source
S symmetric of the synchrotron source with respect to the first crystal. A ray
diffracted in the vertical plane follows the path SMF (Fig. 10). Let us consider a
ray which makes, in the "horizontal plane" (in fact in the plane symmetric of the
horizontal plane with respect to the first crystal) an angle  ψ with SM. Its angle of
incidence θ' on the crystal is slightly different from θ:

and its wavelength is slightly different from the one of SM.
Since its scattering plane makes an angle ψ with the vertical one, at a dis-

tance p + q from the source (p being the distance source-monochromator and q
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the distance monochromator-sample) it will be shifted laterally from F to F' by
(p+q)ψ and probably will be outside the sample and then lost for the experiment.

In order to make this beam follow the path SM'F the diffraction vector h
in M' should be in this plane and parallel to M'C. The crystal should be curved
with a radius CM = (2pq sin θ)/(p + q).

Once the crystal is curved, the angle of incidence of SM' is no more exactly
θ' but θ'+ε'. In order the beam to be still diffracted by the crystal, ε' should be less
than the Darwin width. It was shown [17] that this condition is fulfilled for a larger
range of horizontal divergence if the ratio q/p is equal to 1/3. The ratio q/p is also
the magnification m (the image of the source is m times the size of the source).
In fact, the ideal surface for the crystal should be a fraction of an ellipsoide of
revolution around SF. The cylindrical curvature discussed here is tangent to the
ellipsoid; it is a good approximation and still better if the magnification m is
equal to 1/3. It was shown that in order not to be at m = 1/3 and to focus a large
divergence one could use a conical surface.

In fact, pure cylindrical bending of even thin rectangular plates results in
a transverse curvature of the plate called anticlastic curvature which results in
a variation of the angle of incidence ΔθΕ for meridian rays divergent from the
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central ray (Fig. 11). The anticlastic radius of curvature RM is related to the
sagittal radius of curvature RS by the relation RM = RS/v, where v is Poisson's
ratio and the crystal is assumed to be isotropic. The influence of anisotropy is
studied in [18].

In order to reduce the anticlastic curvature, it is possible to attach to the
back surface transverse ribs, but the glue causes appreciable distortions in the
crystallographic planes. To eliminate these distortions the ribs and the thin crystal
are cut ín a thick monolithic Si block (Fig. 12) [12].

4.1.2. Meridional focusing
Whereas the anticlastic bending has to be strongly reduced for saggital fo-

cusing (because it induces immediately a variation of the angle of incidence on
the diffracting planes), with meridional focusing, the anticlastic bending has a
negligeable influence.

In order to obtain a focused monochromatic diffracted beam the distances
source-crystal p, crystal—focus q and the radius of curvature R should be related
by the relations

where α is the angle of asymmetry. Equation (8) yields for the focusing and Eq. (9)
for a monochromatic focusing.

The usual setup is the Johann geometry [19] (Fig. 13) which induces spherical
aberration. The focusing would be perfect in the Johansson geometry where the
monochromator surface is grinded in order to be curved with a radius of curvature
equal to R when unstressed and then homogeneously curved with a radius equal to
R/2. Then the radius of the diffracting planes is equal to R and that of the surface
of the crystal is equal to R/2, i.e. the radius of the socalled Rowland circle on
which are located the source, the crystal and the focus. Such a setup is not easily
tuneable since the radius of curvature is predetermined by that of the unstressed
surface of the crystal. Another way to eliminate the spherical aberration is to have
an ellipsoidal surface with the source and the focusing point at the focuses of the
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ellipsoid and an elliptical cylinder is a good approximation. Such a curvature can
be obtained with a triangle profiled along an adequate shape [16].

4.2. Polychromatic focalization; application o dispersive XAFS

Let us consider a meridional focusing such that only condition (8) is satisfied.
The variation θ2-θ1 of angle of incidence between the two extremities of the curved
crystal is given by



26 	 C. Malgrange

where L is the length of the crystal (Fig. 14).

For a point source S, the polychromatic beam focuses in F and diverges after.
A linear detector placed beyond F analyses the beam as a function of λ. Such a
setup was developed at the synchrotron facility in Orsay (France) to obtain at once
all the XAFS (X-ray absorption fine stucture) spectra given by a sample put at
the focus and to do time-resolved experiments [16]. A mirror is placed between the
sample and the detector in order to eliminate the harmonics (see below).
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5. Mirrors

The refraction index for X-rays can be written

re is the classical radius of electron, λ — the wavelength, Nj is the number of
atoms of species j per unit volume, fj — the atomic scattering factor in incident
direction which is equal to

where Ζj is the atomic number of j-th atom, Δ f^ and Δ f7 the corrections for
anomalous dispersion; Δ f^' is related to the atomic absorption coefficient or atomic
cross-section for absorption μja by the relation

Since the real part of n is less than 1 there exists specular reflection for
grazing angles θ less than a critical angle θ such that

where δr is the real part of δ. Since δr is very small and neglecting the anomalous
dispersion,

where N is the number of electrons per unit volume. θc increases with N and then is
larger for mirror surfaces coated with heavier elements and increases proportionally
to λ. As an example for a gold coated mirror and λ = 1.54 Ǻ (E  8 keV),
θc = 10 mrad  0.50 whereas for λ = 15.4 Ǻ (Ε  800 eV), θ 5°. Corresponding
values for silica are divided by 3.

For a beam incident on a mirror with an angle θ0, wavelengths with a critical
angle less than θ0 are reflected, i.e. wavelengths λ larger than λ 0 = θ0 (π/reΝ)1/ 2 .
Figure 15 shows the reflectivity of a platinum coated glass mirror for various angles
of incidence [21]. The cut-off angle is not sharp because of absorption. Mirrors act
then as filters which suppress high-energy photons and they are used to eliminate
higher harmonics of Bragg reflections from crystal monochromators.

Mirrors can be polished to obtain curved surfaces and such curved mirrors
are used to focus X-ray beams. At X-ray energies, θ ,  values are typically a fraction
of a degree and then mirrors need to be long, of the order of 1 metre (for example
at an incidence of 3 mrad a 1 m mirror placed at 20 m from the source would
intercept 0.15 mrad = 0.5 minute) which is an advantage as far as heat loading is
concerned but a disadvantage with respect to the cost. The efficiency of focusing is
limited by aberrations. For a punctual source, an image without any aberration is
obtained if the surface of the mirror is ellipsoidal with the focuses of the ellipsoide
at the source and its image (however, due to the non-zero size of the source it is
impossible to design an aberration-free mirror). Such an ideal geometry can be
approximated by cylindrical surfaces exactly as has been discussed for crystals.
The quality of the surface is essential and two parameters are of importance: the
roughness and the slope error which are more difficult to obtain low enough (a
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few angströms and arc seconds respectively [22]) for larger surfaces. More details
about mirrors can be found in [23].

6. Polarization

Before the availability of synchrotron radiation very few people realized
X-ray polarized experiments [24, 25] because X-ray tubes deliver a low flux of
unpolarized X-rays and polarization phenomena in X-ray domain are very specific
as is explained below.

Mοliére showed in 1939 [26] that the dielectric constant of materials and then
the index of refraction for X-ray wavelengths is a scalar except near an absorption
edge so that, in general, crystals present no birefringence (dependence of the index
of refraction on the direction of the electric vector) nor dichroism (dependence of
the absorption coefficient, i.e. the imaginary part of the index of refraction on the
electric vector).

Moliére showed also that crystals are birefringent at Bragg incidence so that
a linearly polarized X-ray beam, at Bragg incidence on a perfect crystal, gives
an elliptically polarized diffracted beam. This phenomenon was first evidenced
experimentally by Skalicky and Malgrange with X-ray tubes [24] and more recently
by Golovchenko et al. [27] with synchrotron radiation. At this stage it is necessary
to recall some results of X-ray dynamical theory upon which the principles of linear
and circular polarizers are based.
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6.1. Linear polarizers

X-ray reflectivity depends on polarization because, in two-beam case dy-
namical theory, equations governing the electrical field for σ and π polarizations
are independent, σ and π being respectively the component perpendicular and
parallel to the scattering plane. The width of the rocking curve for π-polarized
beam decreases proportionally to cos 2θ (as expected from Eq. (4)) tending to
zero for Bragg angles going towards 45°. The maximum intensity also decreases
when cos 2θ decreases (Fig. 16). Diffraction at a Bragg angle equal to 45° gives a

reflected beam fully linearly polarized with its electric vector perpendicular to the
scattering plane. For Bragg angles near 45°, the polarization rate is still good and
can be enhanced using two parallel crystals slightly detuned [28].

In the case of transmission, the incident and diffracted waves are coupled
in the crystal forming four different Bloch waves: two of them are polarized per-
pendicularly to the scattering plane (σ wave fields) and the two others in the
scattering plane (π wave fields). These Bloch waves are stationary waves whose
period is equal to the periodicity of the diffracting planes. For each polarization
one wave field (let us call it 1) has its nodes on the planes of maximum electrical
density in the crystal and is then very much less absorbed than ordinary X-rays,
the other one (wave field 2) has its nodes- on the planes of minimum electrical
density and is then much absorbed (the absorption coefficients range as follows:

μ1σ< μ1π< μ0 < μ2π<μ3,where μ0 is the ordinary linear absorption coeffi-
cient). Furthermore, the index of refraction of these four wave fields are different
(n1σ>n1π> n2π> n2σ), these differences depending on the angle of incidence of the
incident wave. For a correctly chosen thickness of the sample, only the σ 1 compo-
nent goes out of the plate and the sample is then a linear polarizer where either
the diffracted wave or the transmitted one can be used [29]; using the transmit-
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ted wave one can get a rotation of the polarization vector by rotating the crystal
without changing the direction of the beam.

6.2. Phase-shift retarding plates

Due to the difference of index of refraction and if the experimental conditions
are such that wave field 1 is preponderant it is possible to design phase-shift
retarders in transmission geometry [24, 25]. Howevere, the incident wave has to
be very parallel because the difference between n σ and nπ varies rapidly with
the angle of incidence. Dmitrienko and Belyakov [30, 31] suggested to use perfect
crystal in Bragg geometry rotated from Bragg reflection by an angle equal to a
few times ( 5) the width of the rocking curve and to use the transmitted beam.
Such a phase-shift retarding plate was realized by Hirano et al. [32].

6.3. Synchrotron radiation and polarization

X-ray beams issued from bending magnets sections are mainly polarized
in the orbit plane. The polarization depends on the angle of the beam with the
orbit plane as is shown in Fig. 17 which indicates the values of the intensity of
the components respectively parallel and perpendicular to the orbit plane. For

rays in the orbit plane the beam is linearly polarized; outside the orbit plane it
is elliptically polarized because the two components are coherent with a phase
dIfference of 90°. Using horizont 1 slits which can translate vertically one obtains
a beam alternatively linearly ο r elliptically (left- and right-handed respectively
above and below the orbit plane) polarized.
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For X-ray absorption measurements on magnetic or chiral material, for mag-
netic diffraction or magnetic Compton scattering, circularly (or at least elliptically)
polarized beams are essential. Up to now, such experiments have been performed
with elliptical light provided by synchrotron beam propagating outside of the orbit
plane.

However, two other ways to obtain circularly polarized X-rays are now in
progress:

— helical undulators delivering a circularly polarized beam are designed to
be placed on third generation synchrotron radiation sources [33]. Let us mention
that monochromation should be designed to preserve as much as possible this
circular polarization [34].

— production of circularly polarized beams by using phase-plate retarders
whose diffracting plane should make an angle of 45° with the plane formed by the
incident beam and the linear electric field.
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