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Theoretical analysis of the thermally stimulated depołarization current
in heterogeneous structure is performed. Two systems are considered: (i)
a single dielectric sphere in dielectric matrix and (ii) a continuous dielec-
tric medium containing sparsely distributed dielectric spheres (Wagner-Voigt
model of heterogeneous dielectric. The existence of the interfacial charge is
taken into account. The equations are found which describe the dependence
of the thermally stimulated depolarization current density on the polariza-
tion conditions and on the electrical properties of the both materials.
PACS nunibers: 77.30.+d

1. Introduction

A considerable number of theories has been elaborated and more or less suc-
cessfully applied to explain the relaxation effects induced by the action of an exter-
nal alternating electric field on some heterogeneous systems (e.g. [1-5]). They are
based on the assumption that the characteristic material parameters, like conduc-
tivity and dielectric permittivity, appearing in pertinent relations can be treated
as constants. In reality, the values of these parameters are temperature-dependent.
Hence, the above theories can be applied to describe the isothermal effects only.

Theoretical approach to the relaxation processes appearing in homogeneous
dielectrics at changing temperature, like field-induced thermally stimulated depo-
larization (TSD) and polarization (TSP) currents, was presented in [4-10]. In these
considerations, the material parameters were treated as temperature-dependent
variables.

A simplified theory of TSP and TSD currents in heterogeneous dielectric sys-
tems, in which the charge carriers are accumulated at interfaces of the components
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(Maxwell-Wagner effect), has been proposed only by Ηaraśta and Thurzo [11] and
by Van Turnhout [4]. The basic assumption of this theory is that the properties
of heterogeneous dielectric are the same as the properties of the parallel-plate

two-layer condenser (Maxwell model) with well-defined thicknesses.
In the real heterogeneous systems the particles of one dielectric are sparsely

distributed in another dielectric. For this reason, in the present paper an attempt
is undertaken to perform calculations of the TSD current density for the system
consisting of dielectric matrix filled with sparsely distributed dielectric spheres
(Wagner-Voigt model).

2. Theory

2.1. Single dielectric sphere in dielectric matrix

We shall consider a model of a heterogeneous system consisting of a single
dielectric sphere of radius R, conductivity K2 and dielectric constant ε2, located
in dielectric matrix with conductivity ΚΙ and dielectric con8tant εl.

During the first step of TSD measurement the sample is polarized in a con-
stant electric field Ε0 at a constant temperature Τp [6-10]. Hence, in order to
relate TSD current to the polarization conditions we must consider firstly the po-
larization process itself. For this purpose we take the centre of the sphere as the
origin of the spherical coordination system (r, θ, Ψ). We choose the z-axis in the
direction of the electric field Ε0 and assume that the angle θ is equal to zero in
this direction.

Under these conditions the potential V(t) outside the sphere satisfies the
Laplace's equation

because of lack of any free space charge. On the surface of the sphere the Laplace,s
equation is not valid, because of accumulation of the surface charge (Maxwell—Wag-
ner effect). Inside the sphere, however, the Laplace,s equation can be used again.
For this reason, for the description of V(t) we must use two different functions

V1(t) andV2(t),outside and inside the sphere, respectively.
The appropriate boundary conditions are:

since the potentials must be equal on both sides of the interface.
(ii) Far from the sphere, the potential is determined only by the external

electric field E0 :

(iii) The normal components of the dielectric displacements must be contin-
uous at the boundary (r = R):

where ε0 is the permittivity of the free space.
(iv) At the centre of the sphere V2 (t) must not have a singularity.
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In the case of symmetry about the z-axis we can seek the solution to the
problem in the form of a series

where Ρn (cos 0) is the n-th Legendre polynomial.
From the above-mentioned boundary conditions it follows that

for all values of n except for n = 1. When n = 1, we have

and

Next, applying the second and fourth boundary conditions to these solutions, we
have

Therefore

The corresponding radial components of the electric fields are

Moreover, on account of the fir8t boundary condition and the solutions (2) we
obtain

Introduction of Eqs. (3) to the third boundary condition yields the differen-
tial equation
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where

The solution of differential Eq. (4) is

Consequently, we can obtain also

For the relation between the two electric fields and the density of the interface
charges q(t) we have from the Gauss law

The initial value B1(0) can be found from Eqs. (3), (6), (7), and (8) by taking
into account that the initial value of the interfacial charge density q(0) is equal to
zero. Consequently, we obtain

Now, we will calculate the final value B 1 (∞), i.e., the value of Β 1 (t) when the
system is in stationary state. In this case dΕ1 (t)/dt = dE2 (t)/dt = 0 and the
third boundary condition reduces to

Performing calculations (similar to those given above) we obtain

Consequently

From the last equations and the Gauss law (8) we obtain for the surface charge
density

Equation (12) can be used, among others, to calculate the magnitude of the total
surface charge Q accumulated on the interface. If the surface charge density q is
constant, then Q = qS, where S is the surface area. As in our case the charge
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distribution is not uniform (q = dQ/dS ≠ 0), the total surface charge must be
written as

On account of the expression (12) and the geometry of the considered system, we
obtain that the total charge of one sign (i.e., the charge accumulated on one half
of the sphere) is

We see that the magnitude of the accumulated interfacial charge increases linearly
with the intensity of applied electric field and is proportional to the difference be-
tween the products of conductivities and dielectric constants of the both materials.

Substitution of Β1(t) and C1(t) from Eqs. (6) and (7), as well as of B1(∞)
and Β1(0) from Eqs. (9) and (10), into Eqs. (3) yields

and

According to the Gauss law (8) and the last expressions the time dependence of
the interfacial charge density is given by

This equation can be used also to describe the polarization current density

Combining Eqs. (8) and (13) we find that the total interfacial charge is the function
of time given by

Now, we can return to calculations of the TSD current in the considered
system. During measurements of the TSD current the external voltage is switched
off at a low temperature T0 and the system is heated up at a constant rate b =
dT/dt, i.e., the temperature Τ and time t are linearly dependent variables

Hence, also in this case we can use (after introduction of a new variable T) the
Laplace's equation to describe the potentials V1(T) and V2 (T). We will seek the
8olutions of the Laplace's equation in the form of the series given by Eqs. (1),
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provided that the coefficients Α, Β, Cn, and Dn are now treated as functions of
temperature Τ.

The boundary conditions to be satisfied by V(T) are as follows:

since during measurements of the TSD current the external field is switched off.

since the function V(T) is continuous across a boundary.
(vii) The normal components of the currents must be continuous at the

interfacial boundary

(viii) At the centre of the sphere the potential V2 (T) must not have a
singularity.

Taking into account the above-mentioned boundary conditions we find that
Α, Β, Cn, and Dn are equal to zero for all values of n except for n = 1. When
n = 1, we have

Consequently, we obtain that the corresponding radial components of the electric
fields are

Introducing the expressions (17) to the boundary condition (vii) we find

where

Solution of this equation is

Consequently

Substitution of the Β1 (T) and C1(T) functions into Eqs. (17) give8
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The initial value of Β1(0) can be found from the Eqs. (19) and the Gauss law
q(0) = ε0ε1E1r(Τ0)|r=R - ε0ε2Ε2r(Τ0)|r=R.

Hence

Now, we can assume that the initial value of charge density q(0) is equal to
the charge density acquired by the system during its polarization at the tempera-
ture Τ (Τ > T0 ), i.e., that it is given by Eq. (12). Therefore

Substitution of Β1 (0) into Eqs. (19) gives the temperature dependences of the
radial components of the electric fields

Consequently, taking into account the last equations, we obtain the following ex-
pression for the radial component of the local TSD current density:

2.2. System containing sparsely distributed dielectric spheres

Let us consider now a model of a heterogeneous system consisting of N di-
electric spheres of radius R, conductivity K2 and dielectric constant ε2 , sparsely
distributed in a dielectric matrix of conductivity K 1 and dielectric constant ει.
We restrict the consideration8 to the system in which the electric field around one
sphere does not influence the field around the other spheres. This requirement
implies that the distances between the neighbouring spheres must be large com-
pared to their radii. At this condition [12] the heterogeneous system containing N
spheres of radius R is equivalent to a single sphere of radius R0, whose dielectric
constant ε and conductivity K are given by



where

Finally, we can describe the density of the local TSD current by

596 	 J. Poźniak

and

where υ2 = Ν(R/R0)3 is the volume fraction of the dispersed spheres. Conse-
quently, the equations obtained for the single sphere can be also used for the
system containing Ν spheres. Obviously, these equations remain valid provided
that R is replaced by R0 as well as the ε2 and K 2 are replaced by ε and K given by
Eqs. (21) and (22), respectively. In this way we obtain also the equations needed
to correlate TSD current with the polarization conditions

and

where

Equation (27), similar to that describing TSD current arising from motion of elec-
tric dipoles [4-10], represents an asymmetrical "glow curve". In agreement with
Eq. (28) the amplitude of this curve is dependent on the volume fraction of the
dispered-phase particles and on the electric properties of the both materials at
Τ. It is also dependent on the polarization conditions, being a linear function of
the polarizing field Ε0 . The fractional term in Eq. (27), which dominates in the
low-temperature range, expresses the initial increase in the current with temper-
ature. The exponential term in Eq. (27), which dominates at high temperature,
describes the decay of the current.
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3. Remarks

It must be emphasized here that the charges, which are described by Eqs.
(23) and (24), are imaginary, but yield the same potential in the given point of
space as that due to the real charges accumulated on N dielectric spheres of radius
R. For the same reason we cannot use Eqs. (15) and (20) to calculate the local
current density within any sphere of radius R.

Application of the present theory to experimental results and the comparison
of the present and previous theories [4, 11] will be discussed in a separate paper.
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