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The sołitary wave propagation in an anharmonic monoatomic linear
chain for the case of an external pressure is investigated. The potential en-
ergy of the crystal with anharmonicities of the third and fourth orders is
considered. Two kinds of solitary waves are obtained. The first kind corre-
sponds to the compressive soliton and the second one — to the rarefactive
soliton. In the case of the 1attice with the cubic anharmonicity the exact
theoretical study was done. Numerical calculations were performed for the
general case. It is found that when pressure rises, amplitudes of solitons also
increase.

PACS nunibers: 63.20.Ry

1. Introduction

Wadati [1] has investigated the solitary and periodic waves propagation in
the nonlinear lattice. As a model, Wadati has adopted the one-dimensional lattice,
which was constituted by N particles of mass m connected by nonlinear springs
with cubic and quartic nonlinearities. In the previous papers [2, 3] we have stud-
ied the solitary waves or solitons propagation in a one-dimensional chain under
constant external forces deforming the lattice. In the case of external tensions
the properties of the soliton solutions are significantly modified. In particular, as
shown in [3], for the discussed there relations between the interatomic-potential
constants and for prescribed external tensions, the soliton solution does not exist.
In other words, the soliton amplitude is equal to zero in this case.

In the present paper we consider the solitary wave propagation in the anhar-
monic monatomic linear chain with the nearest-neighbour interaction for the case
of an arbitrary external pressure. As we shall see later, the properties of solitons
existing in a one-dimensional lattice significantly depend on whether the lattice is
under the pressure or under the tension. The problems will be examined below in
more detail.
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2. Potential energy of the system

The potential energy of this system generaly can be written in the form

where Φ(Rn,n-1) is the interaction potential between neighbouring atoms, Rn is
the position vector for the atom in the lattice site n. Let us consider the case when
the external pressure is fixed. Then, for the one-dimensional chain the effect of the
external forces can be described by the external pressure Ρ which acts on the ends
of the chain [4]

We consider the potential energy of the crystal with anharmonicities of the
third and fourth orders in the series expansion of the potential energy. Thus the
expression Φ(Rn,n-1) is

where Φ(α) is the depth of the potential, αn is the average distance between neigh-
bouring atoms in the harmonic approximation at Ρ = 0 and α, β, γ are the co-
efficients defining the interaction of atoms. Throughout the paper, we assume
α, β , γ ≥ 0. The second term on the right hand side of (2.3) is the harmonic ap-
proximation; the third and fourth terms are corrections due to anharmonicity to
the second term. In the harmonic approximation β, γ = 0.

Following f2. 51. we can obtain

where Φ0(α0) is the constant and it describes the depth of the interatomic potential
at Ρ Ο 0. The parameters k 2 , k3 and α 0 can be written as

where b = αγ/β2 . The value y can be determined from the equation

Equation (2.6) has three solutions for y(P) with Ρ being an argument. However,
there is only one real solution which from "physical" prerequisites can be accepted,
i.e. such that y(P) → 0 as Ρ → 0.

Now introducing the dynamical displacements of the atoms un, according to
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the potential energy of the lattice can be written as

Formally the functional form of the potential energy of the lattice (2.8) coincides
with that obtained for the free lattice, but in our case the parameters k2 and k3
are pressure dependent.

3. Solitary wave solution

In this section we get the soliton solutions for the lattice model with the
potential energy in the form considered in the previous Section. The equation of
motion of the n-th atom can be written as

where 4, = un — un -1 and the dot stands for differentiation with respect to time
t. Being interested in solutions either of the smooth waves-type, or of the waves
with the long wave length compared with the spacing of atoms in the lattice, one
can adopt the limit of a continuum model. Expressing the displacements υn±1 in
the terms of the displacement 2t ß and its spatial derivatives by means of the Taylor
series, we obtain a new form of the equation of motion

where 1 = α+α0, υ 2 = 2k2l2α/m and the primes denote the partial differentiations
with respect to space coordinate. It is noteworthy that expression (3.2) was gained
in the approximation when only the derivatives with respect to space coordinate
up to the fourth order have been taken into account. Moreover, we assume an
infinite number of atoms in the chain.

The travelling wave solution (solitary wave) corresponding to Eq. (3.2) can
be obtained putting u(x, t) = u(x — Vt) with u= V2u". Here V is the velocity of
the travelling wave in the lattice. Then, integrating Eq. (3.2) twice with respect
to x. we obtain

where c1 and c 2  are arbitrary constants and

The soliton solution is obtained under the conditions: Ζ ---> 0 and Ζ → 0 as
k| →∞. This limiting condition holds if in Eq. (3.3) c1 = 0, c 2 = 0 and C> 0.
Following the treatment of Wadati [1] and making use of the work [2], we can
obtain two kinds of solitary waves. The first one corresponds to the compressive
soliton and the second one to the rarefactive soliton. These soliton solutions are
given by .
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and

respectively. x0 is the integration constant. The constants Ζ1 and Ζ2 can be rewrit-
ten as

The expressions, similar to (3.5) and (3.6), were obtained previously in [1], but in
our case parameters A, Β and C depend on the pressure P. The exact solitary
wave solutions (3.5) and (3.6) are equivalent to the results in [1] for P = 0. It
should be noted that Eqs. (3.5) and (3.6) can also be obtained formally from [2, 3]
if substituting P = —F, where F is the external tension. In general, x in Eqs. (3.5)
and (3.6) linearly depends on the space coordinate x' and time t by x - Vt.

It should be emphasized that the soliton solutions (3.5) and (3.6) were de-
rived under the condition that the parameter Β ≥ 0. If we change the sign in
Eq. (3.5) before the curly bracket to the opposite one, we obtain the solitary solu-
tion (rarefactive soliton) for the case Β ≥ 0. Doing similar manipulation Eq. (3.6)
can be written in the form of the solitary solution for the compressive soliton.

The expression Ζ(x) characterizes the local deformation of the atomic linear
chain, Ζ = du/dx, where u is the displacement from the equilibrium positions of
atoms. According to [1] the function u can be written in the form (B ≤ 0)

where ul is the integration constant, ε = ±1 for the compressive and rarefactive
solitons, respectively.

4. The case of the cubic anharmonicity

As the first step we consider the case of γ = 0 in (2.3) and (2.8), since this
case is the simplest one. Determining k 2 and k3 by (2.5) and (2.6) we obtain

where

It is seen from (4.2) that Β <O. The value u given by (4.1) describes the step-like
transitions from the value uo = -4 √C/Β at x = —∞ to zero at x = ∞. Such
step-like transition is usually denoted as a kink. This kink moves with velocity V
in the x-direction. In (4.1) we take into account the boundary condition u( ∞) = 0.

As seen from Eq. (4.1) for the considered case, we have
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where Δx and Z0 are the width and amplitude of the compressive soliton, respec-
tively. We want to point out that in this case the solitary wave solution contains
only the compressive soliton. Explicitly, we have that

It is convenient to write the equality u 0  = —4√C/Β in the form

This equation defines the dependence of the soliton velocity V on the pressure P
and the amplitude of the kink u 0 . Substituting (4.6) into (4.3) and (4.4) we find

It is easy to verify that Ζ0 Δx = πu 0 .
Let us consider the solitons with u 0 = const. The velocity of the soliton

V according to (4.6) decreases as the pressure P increases. The same conclusion
can be drawn with respect to the soliton amplitude Ζ 0 . However, the width of
the compressive soliton increases with the pressure P. Roughly speaking, pressure
induces the destuction of the soliton with u 0 = const. It should be noted that
in the case of the external tension action an opposite tendency takes place, the
tension causes the compressive soliton to be more stable.

All the above formulae have been derived in the case of the continuous
approximation. This approximation is valid if Δx » l and

For a given pressure P this inequality imposes a restriction on the possible values
u 0 and then according to (4.6) also on the velocity of a soliton V.

5. General treatment

Let us now consider the general case when 'γ ≠ 0. In this case the compressive .
and rarefactive solitons can propagate in the lattice at the same time. The sign of
Β is essential since it determines the form of solitary solutions for the compressive
and rarefactive solitons. This sign coincides with the sign of k3/k2. The ratio k 3 /k2
is determined by Eqs. (2.5) and (2.6). Because of physical reasons we shall confine
ourselves to the solution y(P) of Eq. (2.6) which tends to zero if P → 0. Then it
is not difficult to show that y(P) ≤ 0 and according to (2.5) k 2 > 0 and k3 < 0.
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Therefore, we can write B < 0 regardless of P. The results of the calculation k3/k2

are shown in Fig. 1. It should be noted that in the case of the tension force acting
on the lattice, the parameter B may change its sign to the opposite one if b> 3/8.
Here for b < 3/8, the parameter B < 0.

For the case of B ≤ 0 the solitary solutions are given by Eqs. (3.5) and
(3.6) for the compressive and rarefactive solitons, respectively. Let us consider the
dependence of the amplitude of the soliton Z* = (βl/α)|Z(0)| on the pressure P.
According to (3.5) and (3.6) the function Z* is

where the upper sign refers to the compressive and the lower sign to the rarefactive
solitons.

If 4 bk2 (V2 /v 2 — 1) » k23 Eq. (5.1) has the form

Thus in this case the amplitudes of the compressive and rarefactive solitons are
equal.

For pressures where 4 bk2(V2 /υ 2 — 1) « k23 and for the compressive soliton,
Ζ* has the following form:

At the same time the quantity Ζ*  for the rarefactive soliton can be written as
follows:

From Eqs. (5.3) and (5.4) we conclude that the amplitudes of the compressive and
rarefactive solitons are not equal.
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As one should expect from (2.5) and (2.6) |k2| and |k3' increase with the
pressure P. The dependence of ratio k3/k2 on the pressure P is shown in Fig. 1.
The ratio k2/k3 appearing in (5.3) tends to infinity as P →∞. However, the
condition 4 bk2/k23 = 1.5 reaches for P = ∞. It means that in high pressure
regime and as long as the velocity of soliton significantly differs from zero, its
amplitude is given by Eq. (5.2).

Now we discuss the numerical results for the pressure dependence of the value
Z* for the compressive and rarefactive solitons. The graphs of the function Z* (P)
for different parameters b and V in the region where 2 P0≥ P ≥ 0 are given in
Figs. 2 and 3. It can be seen that the pressure dependence of Z* is approximately

proportional to P, except the region of small P for the compressive soliton. In this
region, the amplitude Z* at the beginning decreases from its value at P = 0 down
to some minimum and then it rises. This tendency is well-pronounced for larger b
and smaller V.

From Figs. 2 and 3 it is seen that amplitudes of the compressive and rar-
efactive solitons increase with P. For some values of b and V, the amplitude of the
rarefactive soliton is larger than the amplitude of the compressive soliton. This
fact is more noticeable in the case of small b and V. Therefore we expect a small
compressive soliton and a large rarefactive soliton. As our calculations show, the
action of pressure on a lattice makes the solitons more stable, leading also to the
increase of the soliton amplitudes.
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6. ConcIusion

Having analysed the results of this paper and results obtained in papers [2, 3]
we can conclude the following: the properties of solitons in the lattice depend
significantly on the kind of force deforming the lattice. In connection with this
conclusion we can notice the basic results concerning the properties of the solitons
in the lattice under the tension.

In this case the properties of the solitons depend significantly on the value
of the characteristic parameter b (2.5). If b < 3/8, then the amplitudes of the
compressive and rarefactive solitons decrease with the rise of the external tension
force F. For some certain value of F, the solitons in the form of the compressive
solitary wave vanish. On the other hand, if b > 3/8, then the amplitudes of the
compressive and rarefactive solitons are rising with the rising value of F. In this
case, when the certain value of F = F* is chosen, the amplitudes of these solitons
are equal. The amplitude of the compressive soliton becomes larger than the am-
plitude of rarefactive soliton when F > F*. It should be noted, however, that the
amplitude of the rarefactive soliton is 1arger than the amplitude of the compressive
soliton in the limit F = 0. At b = 3/8 one can find the certain value of F when
any kinds of the solitary waves are absent in the lattice.
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