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On the basis of the deformable body model and harmonic potential
approximation, a nonlinear Hamiltonian describing rovibrational states of
diatomic molecules has been derived. The proposed approach is extended to
include the Simons—Parr-Finlan potential, and the obtained equations are
applied in evaluation of molecular constants and in reproduction of rovibra-
tional spectra of the 1Σ state of 12 C 32 S, 13C160 and rotational spectra of
12C160 molecules. A comparison with the standard Dunham results is also
made.
PACS numbers: 33.10.Cs, 33.10.Jz

1. Introduction

Investigation of systems with rotational and vibrational degrees of freedom
(the socalled rovibrational systems) has been performed in the framework of the-
ories which are built up on the basis of rigid, semirigid or nonrigid models of a
molecule [1]. Recent research in this field brought forth a few significant results
[2-9] providing alternative solutions to the problem of description of rovibrational
systems and interpretation of molecular spectra. In particular, a soft body model
[8, 9] in which the interatomic distances depend on the angular frequency of rota-
tion, has been introduced. As a result, the generalized Darling-Dennison Hamilto-
nian was obtained, yielding quite satisfactory relationship between theoretical and
experimental values of rotational energy of diatomic molecules. Another proposal
is the deformable body model [10], describing a molecule whose element positions
depend on the momentum and angular momentum as a result of the deformational
influence of the Coriolis and centrifugal forces acting in the rovibrational systems.
Taking into account the above assumption and the harmonic potential approxi-
mation, a nonlinear (in the quantum-mechanical sense) Hamiltonian was derived,
which has not as yet been used in the rovibrational spectroscopy.
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In the context of the above consideration, a general aim of this paper is to
derive, in the framework of the deformable body model and harmonic potential
approximation, a nonlinear quantum-mechanical Hamiltonian describing rovibra-
tional states of diatomic molecules. Next, the proposed approach will be extended
to include a more complicated case of the Simons-Parr-Finlan potential, and the
obtained equations will be applied in evaluation of the molecular constants and
in reproduction of rovibrational spectra of the 1Σ state of 12C325 , 13C16O, and
rotational spectra of 12C16O molecules.

2. Nonlinear Hamiltonian of diatomic molecules in
harmonic potential approximation

Let us recall the fundamental assumptions for the deformable model of
molecules:

(i) The centrifugal and Coriolis forces operate in the rovibrational systems.
(ii) The displacements observed in the rovibrational systems are of vibrational-

-deformational type, i.e., vibrations occur in the potential force field modified
by the centrifugal and Coriolis forces.

(iii) The magnitude of the deformational displacements of atoms determines the
dynamical equilibrium state between the deforming and restoring potential
forces.
The application of the deformable body model in description of rovibrational

systems leads to the nonlinear [10] (in the quantum-mechanical sense) Hamiltonian

where Ρ = {Ĵ,p} and Ĵ,p are the operation of the angular and vibrational momenta,
Λ is the matrix of force constants, and

are the matrices of effective normal coordinates and deformational displacements
[10], respectively. The remaining matrices occurring in Eqs. (1), (2) and (3) are
defined in [10].

Now, let us consider a two-atom system whose components are endowed with
masses m1 and m2. The reduced mass of the system is m = m 1 m2/(m1 + m2 ),
and the vibrational-deformational displacements are described by the coordinate
q canonically coupled with the momentum p. When the Taylor expansion of the
reciprocal moment of inertia in the equilibrium configuration q 0 is employed
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Hamiltonian (1) for a two-atom system reduces to the simple form

and the substitution of the explicit form of operation p = -iħ∂/∂η [10], .4 and D
yields

In order to solve the Schrödinger equation with the nonlinear operator (9) we
propose the procedure which involves the following steps:

(i) Calculation of the "matrix" element (υ, J|D+λ| υ, J) on the base of harmonic
oscillator and rigid rotor wave functions of the twoatom system.

(ii) Replacement of the nonlinear term (b + λ) -1 in the Hamiltonian by the
"matrix" element calculated in (i).

(iii) Averaging of the linear Hamiltonian over rotational states, on the base of
rotational wave functions of diatomic molecules.

(iv) Solution of the vibrational Schrödinger equation by using the standard meth-
ods of quantum mechanics.

Realization of the above operations yields the Schrodinger equation for harmonic
oscillator, which can be strictly solved

2where Η J(γJ1/2 η) is Hermite polynomial in γJ1/2η.
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The rovibrational transitions v -4 v+1, J -4 J+ 1, new equilibrium distance
qJ = q0 + qD and modified force constant λ J can be calculated from the following
formulae:

whereas the rotational energy in the vibrational state υ and the energy of rotational
transition are described by the equations

where Ε ο is the vibrational energy in the rotational state J = 0. Taking into
account the general definition (5), it is apparent that η = q - 2(BC/λ) 1 / 2 [1 +
3CJ(J + 1)] -1 . It is interesting to note that identical formulas for effective vi-
brational coordinates and rovibrational energy (11) were obtained by Schrödinger
[11], who, however, has not given any physical interpretation of the transition to
new variable q → η.

3. Nonlinear Hamiltonian of diatomic molecuIes in
Simons-Parr-Finlan potential approximation

The results obtained in the previous section indicate that in rovibrational
twoatom systems the vibrations occur in the harmonic force field with the modi-
fied harmonic constant and the changed equilibrium configuration qJ. It is a simple
consequence of the deformational action of the centrifugal forces which operate in
all systems with a rotational degree of freedom [10]. In view of the above, qD
may be interpreted as a deformational displacement resulting from the centrifugal
distortion, and η = q - qD is an effective coordinate describing vibrations around
the new equilibrium configuration qJ. The above interpretation permits a modifi-
cation of the presented approach to two-atom systems by using the expansion of
the potential and rotational term occurring in the Schrödinger equation
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in the changed equilibrium point qJ instead of q0

The linear effective force constant fJ (∂Uef(q)/∂q)qD is identically equal to
zero because the potential function Uef(q) has a minimum in the changed  equilib-
rium configuration. In view of the above, the wave equation (20) for a parabolic
expansion may be replaced by the set of equations

or taking advantage of a new effective vibrational variable η = q — qD in the
equivalent form

All the terms in (22) have clear physical interpretation, namely, Uef(qD) represents
an effective rotational energy including a change of the molecular moment of inertia
and of the potential energy due to the deformational action of the centrifugal force,
whereas the remaining terms describe the energy of a harmonic osciliator with the
changed force constant. The auxiliary equation (23) determines the dynamical
equilibrium state of the deformational and restoring potential forces, and can be
used to calculate the quantity qD. Needles to mention that the wave equation (22)
can be analytically solved for any potential U(q), not only for one of harmonic-type.

As an example, let us consider a potential in the simple Simons—Parr-Finlan
form [12], i.e.,

where D0 is a constant related to the dissociation energy of a molecule. Introducing
(26a) into (23) and (24a,b) one gets
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A look into (27) reveals that

and as a consequence we obtain

Expanding the potential function (26a) in a power series of q for q/q 0 « 1

the quantity 2D0Q0-2 which appears in (32) may be interpreted as a force constant
λ. In view of the above, the final form of the wave equation in the parabolic approx-
imation, for a twoatom system described by the Simons—Parr-Finlan potential,
may be written as follows:

where the eigenvalues and corresponding wave functions are

4. Applications

In order to compare formulae (11) and (35) with the result of the standard
Dunham approach [13], let us consider a polynomial expansion of the rovibra-
tional energy in series of vibrational and rotational quantum numbers υ and J,
respectively
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where Ykl are Dunham parameters whose values are obtained by fitting the exper-
imental data. A comparison of suitable quantities leads to the set of correspon-
dences given for J = 0, 1, 2

for harmonic approximation, and

for the model based on the Simons—Parr-Finlan potential. The apparent absence
of higher order vibrational terms, is a result of parabolic approximation which
eliminates all the terms for k > 1. On the other hand, there is no limitation on the
rotational series, which is fully reproduced. In view of the above, formulae (11)
and (35) can be applied to evaluate molecular parameters ω, B, C and reproduce
the energy of rovibrational transitions in a wide range of rotational states of low
vibrationally excitied (υ = 0,1) molecules. As an example molecules 12C32S and
13C16O in the 1Σ electronic state will be taken into consideration.

In order to compare rovibrational formulae (11) and (35) we will also calcu-
late molecular parameters q0, λ, and the energy of rotational transitions in the 1Σ
state of 12C16O molecule. The obtained results and their comparison with the 2-
and 3-parametric Dunham fit are presented in Table I.
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The best values of the molecular parameters will be determined by the lin-
ear least-square routine in which the statistical weights, proportional to the in-
verse of experimental uncertainties, are taken as being equal to one. Tables H
and IH present the parameters with their sigma standard errors obtained by the
fitting procedure and used for the calculation of the rovibrational transitions.
Moreover, the calculated frequencies are compared with these obtained applying
the 3-parametric Dunham formulae, including two different sets of parameters
{ω, α, B} and {ω,B,D}.
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5. Discussion .

An application of the deformable body model has lead to a new expansion of
rovibrational energy of diatomic molecules which provides quite satisfactory rela-
tionship between theoretical and experimental data in a wide range of rotational
states. However, the parabolic approximation limits the application of the derived
equations to the low vibrational states (υ = 0,1) of molecules.

The results obtained indicate that formula (35) reproduces the energy of
rovibrational transitions and molecular parameters for all the molecules consid-
ered more precisely, than Eq. (11) and 3-parametric Dunham expansions. Because
parabolic approximation for vibrationally low excited molecules seems to be rele-
vant for harmonic as well as Simons—Parr-Finlan potential, we arrive at the con-
clusion that the model assuming vibrational displacements about the modified
equilibrium configuration leads to a better physically supported equation than the
one considering kinematics in the vicinity of the original configuration. The dif-
ference in accuracy of calculations performed by using both formulae is especially
apparent for 13C16 O, when σ changes as much as two orders of magnitude relative
to the Dunham result. However, it must be emphasized here that both formulae
give unsatisfactory reproduction of the equilibrium distance and force constant for
12C16O, relative to the standard methods based on the polyparametric expansions.
It is a consequence of application of very simple model potentials which do not
reproduce satisfactorily actual internal motion potential of diatomic systems and
lead to the pure parametric equations.

The deformable body model introduces important relations between the
standard constants and the new molecular constants connected with the equilib-
rium distance and potential parameters, thus making it possible to calculate val-
ues of these parameters by using the rovibrational spectra of diatomic molecules.
Moreover, the derived formulae permit to obtain the effective force constant and
changed frequencies of normal vibrations, as well as new equilibrium distances in
each of the rotational state. As follows from relations (41b,c) and (43ó,c), the pa-
rameters ΥlJ responsible for rovibrational couplings have been taken into account
in the derived formulae in a natural way, and the results obtained for 12C32S indi-
cate that the constant Υ11 should be regarded in the calculations, although, it has
been disregarded in Ref. [14].

It is well-known that the Dunham expansion of the rovibrational energy of
diatomic molecules does not provide any information about the wave functions
of individual states of a molecule. In consequence, matrix elements of operators,
Franck-Condon factors and intensities of rovibrational transitions, cannot be di-
rectly calculated. The method presented here provides the possibility to obtain
the energy levels as well as the wave functions in the analytical form, which is not

. possible within the standard Dunham approach.
The proposed method based on the deformable body model and the parabolic

approximation may be developed in the two directions:
(i) Taking into account higher-order terms in the expansion of Uef(q), and em-

ploying the perturbation method for calculation of the rovibrational energy
including anharmonic terms.
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(ii) Considering other potential functions, more accurately approximating the
actual potential of the system under study.

The results of investigation of the aforementioned problems will be presented
in separate papers, however, the results obtained in this work provide the intro-
ductory information on the accuracy of calculations and the possible limitations
relevant to application of the nonlinear rovibrational Hamiltonian derived on the
basis of the deformable body model.
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