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The nonlinear propagation of the Alfvén and magnetosonic waves in the
solar corona is investigated in terms of mode1 equations. Due to viscous ef-
fects taken into account the propagation of the Alfven wave itself is governed
by a Burgers-type equation. The Alfven waves exhibit a tendency to drive
both the slow and fast magnetosonic waves. For this process model equations
are a generalization of the Zakharov equations. The propagation of the mag-
netosonic waves is described by linearized Boussinesq-type equations with
ponderomotive terms due to the Alfven wave. Both long and short Alfven
waves are considered. Also the limits of the slow and fast modes are investi-
gated. An approximate shock wave solution has been found for a vertically
propagating slow mode. Numerical results for the fast mode propagating
perpendicular to the magnetic field show the effect of inhomogeneity and
pumping on a shock as the solution of the homogeneous Burgers equation.

PACS numbers: 03.40.Kf, 52.35.Mw

1. Introduction

Although the problem of the propagation of linear magnetohydrodynamic
waves in an inhomogeneous medium is of great interest in solar , physics (e.g. [1]),
it has not been yet investigated in sufficient detail. Moreover, the propagation of
MHD waves has been studied mostly in the case where the Alfvén waves decouple
from magnetosonic ones (see e.g. [2, 3]).

Few analytical calculations relating both the Alfvén and the magnetosonic
waves have been attempted. There are some numerical simulations made by Holl-
weg et al. [4]. They conclude that shear Alfven wave in a solar magnetic flux
tube can drive sound waves which eventually dissipate into shocks. It is quali-
tatively suggested that Alfven waves may heat the corona undirectly by driving
the slow mode, with some of the properties of spicules. Sakai and Sonneup [5]
have derived model equations which describe the long dispersive Alfven wave
driving sound wave. On the other hand the equation governing the evolution of `
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the fast wave envelope modulated by a slow wave driven by the ponderomotive
force has been derived for a sausage wave travelling along magnetic photospheric
slab with rigid walls by Sahyouni et al. [6]. Model equations describing dispersive
Alfven-magnetosonic waves interaction have been derived by Shukla et al. [7].
Coupling between magnetosonic waves and tearing mode has been described in
terms of model equations by Sakai and Washimí [8]. Coupled nonlinear Schrödinger
equations governing the interaction of sausage and kink surface waves in a plasma
slab have been derived by Vladimirov et al. [9].

In all above mentioned cases the derived equations are some generalizations
of the Zakharov equations originally derived for the Langmuir wave and slow
density plasma response. A recent source of references on these equations can
be found in Murawski et al. [10]. The Zakharov equations do not take, however, ..

viscosity into account.
The purpose of this paper is to derive model equations describing the cou-

pling between Alfvén and magnetosonic waves which are driven by the former. We
are not going to treat resonant interaction between Alfvén waves. This process can .

lead to creation of new waves (see Wentzel [11]). Actually, the Alfvén wave can
drive both the slow and fast mode. Due to the small value of the sound speed in
comparison to the Alfven one, we should expect weak coupling in the Alfvén—slow
mode interaction and a strong one for the Alfvén—fast wave interaction. This pro-
cess of driving of the fast wave can be even enhanced by the phase mixing effect
caused by inhomogeneities in the embient magnetic field.

The paper is organized as follows. The next Section presents fundamental set:
of equations for the Alfvén and magnetosonic waves which are shortly described
in Section 3. A dispersion relation for the viscous non-dispersive Alfvén wave is
derived in Section 4. Burgers-type equations describing the Alfvén waves propa-
gation are presented in Section 5. A case of linear polarization is also discussed.
Equations which govern the Alfvén-magnetosonic waves interaction are derived in
the next Section. Numerical results for the fast mode propagating perpendicular
to the ambient magnetic field are shown in the subsection 6.1.2. The final part of
the paper contains a short summary and conclusions.

2. Fundamental equations

Let us consider a viscous compressible plasma with infinite conductivity de-
scribed by the equations of magnetohydrodynamics (e.g. [12]):
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where p is the plasma density, V ≡ [u, υ, w] the velocity ( V1 = u, V2 = υ, V3 = w ),
p the pressure, μ the magnetic permitivity, Β ≡ [α, h, b] the magnetic induction, γ
the ratio of specific heats, and h0 » η ι the dynamic and bulk viscosity coefficients ;
respectively. The indite t denotes the partial differentiation with respect to time.
In the above equations two important effects have been neglected: electron thermal
conduction [13] and Braginskii viscosity vector simplifled (e.g. [14, 15]).

We introduce a Cartesian coordinate system with z-axis parallel to the undis-
turbed inhomogeneous. (x dependent) magnetic field B0(x). In what follows we
assume that all variables depend on x and z only.

The undisturbed state is characterized by V = 0, p = p0 = const., p = p0 (x),
Β0 = [0 , 0 , B0(x)].

3. Basic modes in a homogeneous medium

3.1. Alfven wave

The driving force for the Alfven wave is the magnetic tension alone. The
dispersion relation is (for the inviscid plasma)

ω = kVA cosΘ .
So, it can not propagate in a direction perpendicular (Θ = π/2) to the magnetic
field. The Alfvén wave is transverse. The velocity perturbation is normal both
to the applied magnetic field and the propagation direction. The magnetic field
perturbation is perpendicular to Β0 . There are no pressure or density changes
associated with the wave. The energy flows along the field at the Alfven speed. .

3.2. Fast wave

For the dissipation free medium we have got the following dispersion relation:

The sign + corresponds to the fast wave. Its velocity becomes the faster of either
VA or cs for θ = 0: for cs » VA , ω/k≈ cs — acoustical in character (longitudinal
fluid motion) and for VA » c„ ω/k VA - magnetic in character (transverse to
Β fluid motion). It is roughly isotropic wave propagating fastest across the field.
The fast wave is driven by tension and pressure forces. The gas and magnetic
pressure variations are in phase. Thus, the fast mode is essentially a sound waVe
in the convection zone, photosphere, and lower chromosphere, but it becomes more
hike an Alfven wave in the upper chromosphere and corona although it still has
small compressions.
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3.3. Slow wave

The sign — in Eq. (3.2) corresponds to a slow wave. It assumes the velocity
and type of wave stucture of the slower of cs and VA for Θ = 0 and in the two
limiting cases: when cs » VA , ω/k ti VA cos θ and when VA» c„ ω/k cs cos Θ.
The energy flow is confined to near the magnetic field direction. The wave is driven
by tension and pressure forces. The gas and magnetic pressure variation are out
of phase. In the corona the slow mode is more acoustic than magnetic.

4. Dispersion relation for the Alfvén wave

To derive model equations which govern the Alfvén wave propagation in
the viscous plasma we need to know the dispersion relation in the homogeneous
medium. In this way linearizing Eqs. (2.1-2.5) around the homogeneous undis-
turbed state we see that the equations for the Alfvén wave decouple and we get .
the following dispersion relation for parallel propagation (ei(kz+ωt)):

In the limit of long wavelength (k → 0) waves we obtain

Note that essentially this expression is similar to the one for the inviscid and
dispersive Alfvén wave (with the Hall term in the induction equation (2.3) in-
cluded), see e.g. [16]. The important difference is that here stands imaginary unit
i corresponding to a dissipation.

5. The fast wave propagation in the long waves limit

Let the dimensionless wave amplitude be equal to ε « 1. In order to compete
with the nonlinearity for the dispersion, it is necessary that the correction in the
dispersion relation for the long wavelength waves be of the order of ε 2 . Thus, for
the problem in question (k -i 0) it is necessary to introduce the following stretched
variables:

The dissipation coefficient ε 2 can be defined as the ratio of a transverse length
scale to a charactersitic wavelength. This scaling is essentially the same as for the
homegeneous medium [17]. We assume here that VA slowly depends on x or in
other words it is locally constant. The corona is in fact highly stuctured across
thefield and this assumption can be only partially justified. This way we can solve
analytically the problem and provide the insight into more complex phenomena
which can be modelled by solving the full set of MHD Eqs. (2.1-2.5) numerically.
For this moment, this problem is too advanced and we limit ourself to assumption
(5.1). Note also that ε2 describes the weakness of dispersion (e.g. [18]).

We use the following expansion:



Note that B0/VA is a constant. Similar equations have been derived by Ruderman
[16] and Mjolhus and Wyller [17]. They, however, have taken resistivity instead of
viscosity into account.

Equations (5.3-5.5) are difficult to solve analytically. Because there is a
lack of corresponding discussion in the literature, we will simply consider some
one-dimensional cases.

5.1. One-dimensional case

In the one-dimensional case ∂ζ = 0 which implies Ψ = 0 and we get coupled
Burgers equations (the subscript 1is dropped):

where f Ξ u or υ, and the nonlinear β and dissipative α coefficients are defined as: .
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where now ε describes the weakness of nonlinearity [18] and allow the density
to be varied in time. The nonlinear coefficient ε can be defined as the ratio of a
characteristic wave amplitude to a transverse length scale. Collection of terms atε  (e.g. [19]) as a compatibility condition gives us coupled twodimensional Burgers
equations:

where

Note that α does not depend on x but β does.

5.2. Energy equation for the coupled Burgers equations

Equation (5.1.1) can be written in the differential "conservation" form:

or in the equivalent integral form:

The first term in this equation describes energy. So, we see that energy decreased
in time. 	.

Equation (5.1.1) can also be rewritten in the form:

which says that a momentum along the axis is conserved.
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5.3. Linear polarization

Now we restrict ourself to a linear polarization. So,

where φ is a constant polarization angle. In this case we obtain a modified Burgers
equation (with a cubic nonlinear term):

Looking for stationary solutions

and integrating (5.3.2) over ζ we get the following ordinary differential equation:

which is very convenient for the phase analysis (e.g. [20]). For α > 0 and β < 0
there are no physical solutions. In the corona, however, both coefficients are greater
than zero. In this case the phase analysis leads to the conclusions  that we should
expect finite solutions for -lm < 1 ≤ 1m, where lm Ξ (2s/3)√ s/3β. Under this
constraint for each value of the free parameter 1 there are two shocks characterized
by:
1) expansion shock: αn < V < b and increases with ς,
2) compression shock: b < V < c and decreases with ς,
where α < b < c are the roots of the equation made from the right hand side
(r. h. s.) of Eq. (5.3.4). For 1 = lm , b = c and the expansion shock solution is
given by

Otherwise the shock solutions are described by

Let us now dimensionalize Eq. (5.3.2) in the following way

with Τ = X/VA. For typical coronal conditions [12]: VA = 2 x 10 6 m/s, c s =
2x105m/s,η0= 1/2 g/(cm s), p0 = 1.5 χ 10-15 g/cm3 , Χ = Ο m, and Β = 10
Gauss, we get that the nonlinear β and dissipative α coefficients of the dimen-
sionless equation are approximately equal to 0.25 and -10 -3 , respectively. Hence,
we deduce that the fast waves in the corona are weakly damped. Thus we must
look for other mechanisms which can explain wave damping. One of such ways is
described in the next Section.

6. Αlfvén—magnetosonic waves interaction

The ΑΙfvén wave drives both the slow and fast waves. So, let us consider
a mix of these waves. Because in the corona the sound speed is very small the
Αlfvén—fast mode interaction is very strong. In other words, because in the corona
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vf 	VA, the process of driving of the fast waves is more efficient than the cor-
responding one for the slow mode. Due to a phase mixing we can expect that in
the upper corona the fast waves can propagate obliquely to the magnetic field.
Other directions of the propagation are also allowed but due to the inhomogeneity
in the x-direction waves are mostly damped. In the following sections we consider
both short and long Alfven waves limits. The short Alfven wave interacts itself
(selfmodulation) and also is modulated by the magnetosonic wave response.

6.1. Magneosonic waves driven by long Alfven wave

To study the long Alfvén-magnetosonic waves interaction the physical quan-
tities are divided into the following parts:

where f0 (x) is the undisturbed state, fi and f2 describe the long slear Alfvén and
magnetosonic waves, respectively. Because the magnetosonic waves are driven by
the Alfven wave we should expect that the former ones are in lower magnitnde :

Thus f1 describes the quantities

Other flrst order quantities are taken to be zero. Due to the dispersion relation for
the Alfvén wave we use the same variables stretching as in Sec. 5, (see Eq. (5.1)).
From Eqs. (2.1-2.5) collecting terms at ε, we get

Note that B0/VA does not depend on x.
Collecting terms at ε 3 we get equations describing the Alfvén wave propaga-

tion and written here in the laboratory reference frame ( ∂τ,∂ζ,and∂ξhave been
replaced by ∂t + VA∂z , ∂x and ∂z , respectively):

Note that the Alfvén wave variables are coupled to the vertical magnetic field,
velocity, density and pressure. The process of interaction is thus much more com-
plicated than in the case of the Zakharov equations.

The magnetosonic waves are described by equations which are obtained at ε2:
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where

Additionally, we must include equations describing an evolution of b2, p2, and p2
with which the Alfven wave is coupled

Note the ponderomotive terms at the r. h. s. of (6.1.5) and (6.1.7) and lack of any
one in (6.1.6). Thus we see that the flow is driven due to the existence of gradients
in this direction described by the first terms of the r. h. s. These equations contain
also the pseudo-damping term c2Axu2x  connected with a phase mixing. We can
prove it by considering the equation:

and assuming that locally á wave may be represented as:

So, the c2Axux  term is a (pseudo-)damping one.

6.1.1. Slow mode limit

In the slow mode limit b 2 , u2, υ2 « w2 and time changes are negligible with
respect to the Alfven time át « VA8x . Then the Alfvén wave is described by

The slow mode propagation iss governed by
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Additionally, the equations for p2 and p2 take the form:

6.1.2. Slow wave propagating vertically in a homogeneous medium

Let us consider a case in which the long Alfvén wave drives only propagating
vertically slow wave and look for approximate solutions. Now, Eqs. (6.1.11-6.1.15)
will be rewritten in the case of the homogeneous field. Neglecting in them some
terms proportional to η 0 due to a weak influence of the viscosity on the long Alfvén
wave we can write equations which describe the Alfvén wave:

the slow mode

and corresponding equations for p2, 'p2, and b 2 :

Note that this equation is adiabatic. So at the level of these calculation8 there
is no coronal heating. It is usefull, however, to provide approximate solution for
the propagating vertically slow wave even for ths case. The full problem does not
seem to be solvable in an analytical way.

Let us assume that the Alfven wave is linearly polarized in the x-direction
(υ 1 = 0) and look for the stationary solutions ( ξ = z - ct). Then, we get

Substituting (6.1.24) into (6.1.23), we obtain

where we have used the notation



Equations for b 2 , p2, and p2 take the following form:
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We consider now the following case

Equation (6.1.25) takes then the form:

where n is an arbitrary number. In the case of n = 2 (c = VΑ/3) we obtain a shock
wave with an amplitude 13 2 and moving on the "background" 4VA/3 - α/213

Choosing other values of n we can find other solutions. This problem, however, is
not discussed in this paper.

6.1.3. Fast mode lmit

The fast magnetosonic wave propagation is governed by the following equations:

6.1.4. Fast mode propagating in the x-direction. Numerical results

In the previous section, we have applied the expansion method to derive
model equations for the Αlfvén—magnetosonic waves interaction. Here, turning
our interest to the fast wave (there is only the fast wave in a medium) propagat-
ing perpendicular to the magnetic field, we develop the reductive Taniuti—Wei's
method ([21], see also [18] for a review of methods) to obtain the inhomogeneous
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Burgers equation in the limit of long wavelength waves. For this aim we expand
the quantities into the serie8:

and due to the spatial inhomogeneity introduce the following coordinate stretching:

Substitution of the expansion (6.1.35) and (6.1.36) into Eqs. (2.1-2.5) leads at ε 2
to the inhomogeneous Burgers equation:

where the nonlinear β and dissipative α coefficients are defined as

Let us now use dimensionless variables as follows:

where f* denotes the constants typical coronal values described in Sec. 5;

This Section describes a perpendicularly propagating fast wave in a sea of
Alfvén waves which produce a ponderomotive force. Due to this process the fast
wave gains some energy and the Alfven wave amplitude is reduced. It seems to
be acceptable to assume that the Alfvén wave reduces slowly its amplitude and
a good choice is to take an exponential dependence. In order to represent this
pumping effect, in the new variables the equation takes the following form:

Now, the dimensionless coefficients are described by

and the ponderomotive term due to the Alfvén wave has been added phenomeno-
logically to the right hand side: be sine t. Note that the pseudo-damping term
1/2(ln cA)x u is a consequence of the spatial inhomogeneity taken into consideration.

Equation (6.1.40) shows that if viscosity is dropped, the linear terms on
the left hand side give u 2 cΑ = const. implying that wave energy flux density is
conserved. The term proportional to u is however a pseudo-damping one because
the energy f'  u 2 dx is not conserved if CA is a function of the coordinate x,
CA = cΑ(x). The other way of proving it is to get a linear dispersion relation from
(6.1.40). After Fourier analysis of the left hand side of it, we get

So, we see that both utt and u terms are responsible for damping of the wave. The
second derivative term is responsible for viscous damping because α is dependent
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on the viscosity coefficients η 0 and η1. The second damping term is connected with
the inhomogeneity and thus is called pseudo-damping term.

For the homogeneous Burgers equation, both the viscous α and the nonlinear
β coefficients are positive. So, there are only shock solutions for which u < 0,
where the phasor ξ = t - x.

6.1.5. Numerical results
The homogeneous Burgers equation possesses an expansion (in ξ) shock wave

solution written as

where ξ = t — x. This shock has been taken as an initial condition (for x = 0)
for the inhomogeneous Burgers equation with the ponderomotive term due to
the Alfvén wave. The equation has been numerically solved i ι the time interval
-5 < t < 15 using the flux centred transport (FCT) technique developed by Boris
and Book [22]. The method has also been described by Schnack and Killeen [23].
The algorithm has been tested by checking conservation laws. The steep coronal
shock is presented in Fig. 1a. This is an exact solution for this equation. Solving
this equation numerically we have to apply boundary condition which modify the
solution. The exact solution is defined on the infinite interval, whereas that one
got numerically can be only simulated on a finite interval.

In order to study the effect of the inhomogeneity on the shock wave we have
considered the case of a decreasing magnetic field. The magnetic field has been
described by

So, at x = xmax = 15 the magnetic field is zero. The equilibrium condition

has been also taken into account.
The numerical results are presented in Fig. 1. The effect of the inhomogeneity

is twofold. First, the wave is attenuated. It is a consequence of the appearence of
the pseudo-damping term in (6.1.40). For example, at x = 15 the amplitude of
the homogeneous shock was less than 0.8 whereas in the case of the decreasing
magnetic field the amplitude was less than 0.04 (Fig. d). Second, the velocity of
the wave is increased. The homogeneous shock moves approximately twice more
slowly than the one under the decreasing magnetic field (Fig. 1d).

Finally, the effect of the ponderomotive forces has been taken into considera-
tion. This way the force, exerted by the Alfven wave, has been phenomenologically
represented as b exp(—Γx) sin t. For b = u (x = 0, t = 0)/15 and Γ = 2/15, nu-
merical results are shown in Fig. 2. The Alfven wave transfers its energy into the
shock thus slowing down the attenuation. However, at x = 15 it is clearly seen
that the pseudo-damping effects are more competitive than the ponderomotive
ones and the shock is much attenuated. Furthermore, due to the periodic nature
of the ponderomotive force the sinusoidal oscillations decreases more slowly than
the shock. So, the shock progressively loses its identity, see Fig. 2c.
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6.2. Magneosonic waves driven by short Alfven waves

For a packet of Alfvén waves modulated by the magnetosonic waves (which
are driven by the former) we use the following expansion:

Whereas the magnetosonic waves variables are expanded as

Collection of terms at ε 1eads to

Note a similarity of these expressions to the corresponding ones for the long Alfvén
waves. Now, however, we have got a phase velocity which is usually different from
VA. An expression for the group velocity λ is found from the equations at ε 2

Finally, from ε3 , we obtain (for the Alfvén wave) complex coefficients nonlinear
Schrödinger equations:

where

and the coefficients are defmed as follows:
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The magnetosonic waves, propagation is governed by linearized Boussinesq-type
equations:

The ponderomotive terms are derived by a method of averaging over the fast
variables (x, z, t) in the Alfvén wave. Note that the r. h. s. of Eq. (6.2.9) disappears
for the homogeneous field. Thus, they components of the magnetosonic waves are
driven only in the case of the inhomogeneous field. Additionally, we must include
equations for b 2 and p2:

7. Conclusions

Short and long Alfvén waves propagate according to Burgers-type and com-
, plex-coefficients-nonlinear Schrödinger equations, respectively. For the derivation

of the complex coefficient nonlinear Schrodinger equation see also [24]. Its solu-
tions have been discussed recently by Stenflo [25] and Stenflo et al. [26]. The long
Alfvén wave is more weakly damped due to the phase mixing effect (which is de-
scribed by the —α(x)uxx term) than the short wave. The Alfvén wave drives the
slow and fast magnetoacoustic waves because of gradients in the z and x direction.
These waves are damped both by the viscosity and the phase mixing effect. Thus,
they cascade their energies into lower scales. The x component of the fast wave
is additionally damped due to inhomogeneity (-c2Axu2x) cascading its energy to
lower scales. The y component of the fast mode is driven only by the short Alfven
wave because of inhomogeneity. The short Alfvén wave is not coupled with the
pressure p2 as the long Alfvén wave is.

The numerical calculations performed for the fast wave propagating perpen-
dicular to the ambient inhomogeneous magnetic field have shown that due to the
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inhomogeneity the shock wave is attenuated and increases its velocity. The peri-
odic ponderomotive force has also been taken into account to show that waves go
into lower and lower scales. This mechanism gives us a little more insight into the
process of damping of the fast mode due to the inhomogeneous magnetic field and
probably into a process of corona heating.

One wouhd also have thought that an interesting problem would be to show
how far the waves must propagate to create shocks. This would be a calculation
relevant to coronal heating. Work in .this direction is in a progress and will be
published elsewhere.
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