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We describe a method for the calculation of the optical properties of a
two-dimensional array of non-overlapping metallic particles (approximated
by spheres) adsorbed on a dielectric slab. The interest in such systems arises
to a large degree from their possible use as coatings, e.g. for solar energy ab-
sorbers and similar technological purposes. The formalism is an extension of
the methods which have been developed in relation to electron scattering by
two-dimensional atomic layers and takes fully into account multiple scatter-
ing of light between the particles of the overlayer and between the overlayer
and the substrate. Scattering of light by multilayers or by an infinite crystal
of non-overlapping spheres can be dealt with by a straightforward exten-
sion of the theory as in the theory of low-energy electron diffraction. Our
calculations show that the usual approximation of replacement of the metal-
lic particles by effective dipoles fails when the size of the particles or the
concentration of particles increases beyond a limit and that l-pole contri-
bution in interparticle scattering beyond the dipolar (l = 1) one introduces
new structure in the absorbance versus frequency curve. The reflection and
absorption of light as a function of frequency is obtained numerically for se-
lected examples. We consider in particular the variation of these quantities
with concentration coverage. We examine also the effect of disorder.
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1. Introduction

In the last few years it has been discovered that films consisting of small
metallic particles embedded in a dielectric host material have optical properties
that might be useful in a variety of technological applications, e.g. as coatings for
solar energy absorbers [1].

Calculations relating to the optical properties of inhomogeneous systems
consisting of non-overlapping metallic spheres of 100 Å radius in a dielectric
host have been published by a number of authors (see [2, 3] and references tħerein).
In most of these calculations the metallic spheres are approximated by dipoles,
with a Drude-type polarisability, leading to an effective dielectric function for the
composite medium via the Clausius—Mossotti equation or variations of it. These
calculations are not valid when the size of the particles and/or the interparticle
distance is of the order of the incident light wavelength or when the fractional
volume occupied by the spheres exceeds a half or so.

Lamb et al. [4] were the first to attempt a treatment of the propagation of
light in the composite medium which solves Maxwell's equations and therefore
takes into account l-pole terms above the dipole (l = 1) one in the evaluation
of the interparticle scattering of light. Their analysis employs a modified ver-
sion of the Korringa—Kohn—Rostoker (KKR)` procedure used in the calculation of
electron-energy-bands in solids. It yields an effective propagation wave vector in an
infinite crystal and as such is related to a transmission experiment in the forward
direction but it does not describe a real experiment because it does not provide
for a proper matching of the incident electromagnetic wave to the reflected and
transmitted into the crystal waves at the surface.

A method which makes this possible has been formulated by us in Refs.
[2, 3] and its applicability demonstrated by application to specific. examples [3,
5]. The basis of it is the calculation of the reflection and transmission matrix
elements, for light incident at a given angle, of a two-dimensional array (periodic
to begin with) of spheres by a mathematical procedure which 'can be formulated
as an extension of the methods which have been developed in relation to electron
scattering by two-dimensional atomic layers [6, 7]. In many applications the system
under consideration consists of a plane of spheres on a dielectric slab with a given
dielectric constant. The reflection ; absorption and transmission of light by such
a system is obtained in a straightforward manner from the matrix elements that
describe the scattering of light by the plane of spheres and those of the substrate
slab [3]. The examples given in Sec. 3 are examples of such systems.

We note, however, that knowing the matrix elements for a layer (a plane) of
spheres, we can obtain those of two layers, four layers etc., using a doubling layer
scheme as in electron scattering by crystals [6, 7]. Alternatively, we can obtain the
complex band stucture for electromagnetic waves and through it the reflection of
light by a "crystal" of metallic or dielectric spheres. This relates to the photonic
gap problem which has attracted considerable attention recently [8]. We shall not
deal with this problem here.
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2. Scattering by a plane of spheres

We consider a twodimensional array of metallic spheres centred on the sites
of a periodic lattice in the xy-plane, embedded in a dielectric host material. We
assume that a plane electromagnetic wave whose electric field component is given
by

(the expression for the magnetic field H = (-i/ωµ)Ñ x E associated with a given
electric field will not be written down), is incident upon this array of spheres. The
electric field component of the scattered wave is given by (we omit the time factor
exp(-iωt))

We note that the magnitude of the wave vector k = √μεω where ε and μ denote
the dielectric constant and magnetic permeability of the host material; k|| is the
component of k in the xy-plane; Rn denotes the centre of the n-th sphere, rn

r — Rn and rn stands for the angular variable of r n • Ln ≡ —irn X n is the
operator for the angular momentum with respect to Rn and depends only on rn ,
so that

which makes the mathematical analysis a lot easier. As usual Ylm denotes a spher-
ical harmonic and he a spherical Hankel function. The coefficients αlmsH(E)which
give the amplitude of the lm-component of the scattered wave from the (zero)th
sphere (the sphere centred on Ale origin), are determined by the lm-component of
the electromagnetic wave incident on this sphere, by applying standard boundary
conditions on the surface of the sphere. We have

"Electric field incident on the (zero)th sphere"=

with a corresponding formula for the incident magnetic field. The second term on
the right hand side of Eq. (4) is due to the waves scattered from all the spheres
in the plane except the one at the origin and it is given by Eq. (2) with the
term corresponding to Rn = 0 excluded. Since E's(r) is a function of the αrmsH(E)

coefficients one obtains a self-consistent system of equations which one must solve
to obtain these coefficients. The central problem in the implementation of this
procedure is to expand the field given by Eq. (4) into spherical waves about the
origin. The expansion of the first term (incident plane wave) is straightforward.
The second term can be written as a sum of spherical waves about the origin as
follows:
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where jl(kr) denotes, as usual, a spherical Bessel function. It can be shown that
[2, 31

A similar formula gives α'l'm'H, in terms of αlmsH(E). The matrix elements of Ω(1 )
and Ω(2) depend of course on the scattering properties of the individual sphere,
the geometry of the plane and on the frequency and wave vector of the incident
radiation. The Ω-matrices have certain symmetry properties which facilitate their
calculation [3]. Furthermore, it turns out that these matrices involve quantities
which are either identical or similar to those met in the treatment of electron
scattering by a layer of muffin-tin atoms which allows one to use, to some degree
at least, existing programs [6] for the computation of these quantities.

Using standard formulae one can rewrite the scattered wave of Eq. (2) as
a sum of plane waves and thus obtain the scattering matrix elements in this
representation.

In many experiments the array of metallic spheres sits on a substrate which
is a dielectric plate of thickness d and permittivity ε s . The situation is described
schematically in Fig. 1. The incident wave of frequency ω has a wave vector with
a component parallel to the plane of the spheres denoted by k|| + g 0 , where k||
lies within the surface Brillouin zone of the corresponding twodimensional lattice,
and g 0 is a reciprocal lattice vector. The amplitude of the wave is denoted by
[E0] g0 i where i indicates a polarisation direction. Because of the twodimensional
periodicity of the structure the reflected and transmitted light consists of a number
of beams (plane waves) corresponding to .different reciprocal vectors g of the given
lattice. [Erf] gi is the amplitude of a reflected beam with a wave vector parallel to
the surface equal to k|| +g. The same applies to the transmitted beam. The matrix
elements which relate an incident plane wave to a transmitted or reflected one by
the array of spheres are denoted by M++gi;g'i'etc., which are functions of theαlmsH(E)
coefficients of Eq. (2) and the geometry of the layer. The (diagonal) matrices R and
T which describe reflection and transmission, respectively, by the dielectric plate
can be combined with the M matrices to give the reflecticity, transmittance and
absorbance of the entire system: spheres on the substrate. The detailed formulae
are given in Ref. [3]. We note that when the frequency of the incident wave is
sufficiently low, so that k « |g| for g ≠ 0, only the g = O term will contribute to
the scattered wave.

3. Examples

In Fig. 2 we show the absorbance, calculated as a function of frequency, of
p-polarized light by a square array of Silver spheres for three different values of the
sphere radius S with the lattice kept constant (lattice constant: α = 350 Å). In
Fig. 3 the absorbance is given for four different values of α, for given S = 80 Å. We
assumed that the optical responce of the individual mettalic sphere is adequately
described by the Drude dielectric function:
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Following Persson and Liebsch [9] we have taken ħω p = 6.93 eV and ħτ- " =
0.158 eV which, it iś assumed, are appropriate for silver particles. In both cases
the dotted curve is calculated in the dipole approximation, i.e. only the dipole
(l = 1) term is kept in the expansion of Eq. (2). The low energy peak corresponds
to a parallel mode resonance, i.e. charge oscillates parallel to the plane of the
spheres, induced by the component of the electric field parallel to this plane. The
high energy peak corresponds to a normal mode resonance, i.e. charge oscillates
normal to the plane of the spheres, induced by the component of the electric field
normal to this plane. We see that as the sphere radius increases (Fig. 2) or as the
lattice constant decreases (Fig. 3), i.e. as the coverage increases, the parallel mode
resonance is shifted towards lower frequencies and the normal mode resonance to
higher frequencies which is in agreement with available experimental data [10].
Inclusion of l-pole terms above the dipolar leads to additional stucture as S/α
increases, as shown by the solid lines in Figs. 2 and 3. Convergence is obtained for
lmax = 4, i.e. by including in the expansion of Eq. (2) all terms up to and including
those with lmax = 4. The l-pole (l > 1) contribution to the absorbance of the
array of spheres comes through interparticle scattering of light which determines
the total wave field incident on a given sphere. This additional stucture has not
been observed experimentally so far. We suspect that this stucture may be very
sensitive to the shape of the metal particles and that deviation from the spherical
shape may destroy it (see also Ref. [5]).

We have assumed an array with a twodimensional periodicity so far. There
are experiments where this is so, at least to a good approximation. In Ref. [3] we
presented an analysis of relevant experimental data by Craighead and Niklasson
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[11] on the scattering of light by a square array of nearly spherical gold particles
on a sapphire substrate and found reasonably good agreement between theory and
experiment. In many cases, however, the metallic particles are not arranged peri-
odically on the substrate and one has to take into account the effect of disorder on
the optical properties of the system. The simplest way to introduce disorder into
the calculation is to assume that the metal spheres occupy randomly a fraction,
denoted by c, of the sites of a regular twodimensional lattice and that the re-
maining sites are empty. In the average T-matrix approximation (ATA) the partly
empty lattice is replaced by a fully occupied one and the T-matrix which describes
the scattering of light by a single sphere (for a proper definition of the T-matrix
see Ref. [3]) is replaced by an average matrix given by cT. One obtains a measure
of the effect of disorder by comparing the absorbance of light by the disordered
partly empty lattice with a lattice constant α, with that calculated for a fully oc-
cupied lattice with a lattice constant α' = α/ √c sothat the coverage is the same in
both cases. This is done in Fig. 4 for p-polarised light. We see that disorder pushes

the normal mode peak (higher in energy) further up to higher frequencies and the
parallel mode peak (lower in energy) further down to lower frequencies. The effect
of disorder on the absorbance curve of a twodimensional array of spheres has also
been considered by Persson and Liebsch [9] in the dipole approximation using an
approximate version of the coherent potential approximation (CPA) method. It
turns out that the shifts predicted by the ATA calculation are in the same di-
rection but smaller, especially in the case of the parallel mode, than those of the
CPA calculation. A reliable comparison with experimental data can not be made
at this stage because of other faction which enter into the determination of the
experimental spectra.

We have also examined the effect of the substrate (a dielectric slab) on the
absorbance of the system: substrate plus adsorbed spheres. We considered a square
lattice with a fraction c = 0.75 of its sites randomly occupied on a substrate of
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polyvinyl alcohol (PVA) which has a dielectric constant εs = 2.25. The result of
the calculation for light incident normally on the system is shown in Fig. 5. The

broken line shows the absorbance of the array of metal particles on its own, the
solid line shows the absorbance of the complete system (metal particles on the
PVA slab) with multiple scattering of light between metal spheres and substrate
taken fully into account. We see that at least in this case there is no significant
effect to be had from the interaction with the substrate.

We have already mentioned that deviation from the spherical shape of the
metallic particles could be important in the determination of the stucture to be
expected of the absorbance and reflectivity curves. The treatment of non-spherical
particles can be done, at least for regular arrays of such particles, without much
difficulty, at least in principle, provided one is prepared to allow for additional
computing time. Such a calculation is presently in progress.

In the examples considered so far the transmitted and reflected light is carried
by the specular (g = 0) beam. In our last example (Fig. 6) this is not the case. In
this case light is incident normally (the electric field points along the x-direction)
on a square array of spheres in the xy-plane. The spheres are made of a dielectric
material with a refractive index nM = √ εM = 3.06 which corresponds to the
refractive index of Al2O3 in the microwave region. The surrounding medium ha8
a refractive index n = 1.01 which corresponds to thermal-compression-molded
dielectric foam. The above values of the dielectric constants are those cited by
Yablonovitch and Gmitter [8] in relation to their experiments on the photonic gap
problem. We have taken S/α = 0.40, where S stands for the radius of the spheres
and α for the lattice constant. The reflectivity is plotted against α/. , where λ is
the wavelength of the incident light, so that the results can be used in any other
frequency region with appropriate scalling of S and α. We note that when α/λ < 1
the reflected (transmitted light) is carried by the specular (g = 0) beam but when
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α/λ > 1 this is shared between five g-vection (those of lowest magnitude). The
dotted curve is obtained in the dipole approximation (lmax = 1), the solid line is
obtained with lmax = 4 when convergence has been attained. The rich stucture of
the reflectivity curve is indeed remarkable. At this stage we are not able to present
results for multilayers of such spheres, but work is now in progress in this direction
and we hope to be able to do so in the very near future.
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