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A generalized superconducting interferometer, comprising a paralle1 arrange-
ment of (lumped) inductances and series (lumped) Josephson junctions is
considered. Such a system can be seen as the building block of a simplified
mode1 of a high-Tc superconductor with its haphazard distribution of Joseph-
son weak links on grain boundaries and lattice defects. It is shown that the
system properties can be self-consistently derived from a properly defined
potential energy function, taking account of the energies of the system, its
current source and external magnetic field. In particular, by solving a sta-
tionary problem for this function relative to conditions of constant current
bias and constant magnetic flux applied to the system, the critical current of
the interferometer can be determined in function of the applied flux. Station-
ary phase relations and their impact on other system variables are discussed
in detail. The theory is applied to the simplest possible system exhibiting
all discussed properties, i.e. an interferometer composed of two junctions in
series and one junction in parallel.

PACS numbers: 74.50.+r, 85.25.Dq

1. Introduction

materials, both in bulk and thin film form, contain intrinsic Joseph-
son weak links, distributed in a more or less disorderly manner on grain boundaries
and crystal lattice defects. In low magnetic fields the junctions can dominate the
material properties. Several theoretical models have been proposed to deal with
this situation, including single junction and junction array models. For instance, a
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single long, tunnel junction has been recently used as a model to explain the criti-
cal current dependence on applied magnetic field in a highly textured YBa2Cu3O7
thin film [1].

However, many experimental facts indicate that junctions appear in the ma-
terial rather as clusters, behaving in many respects like parallel arrays (cf. [2]). It
can be also reasonably supposed that some of the junctions in the parallel arrays
are connected in series. Therefore, the elementary block in any theoretical model of
the material in question cannot be reduced beyond a generalized superconducting
interferometer, i.e. a parallel arrangement of series connected Josephson junctions
and inductances. Theoretical analysis of d.c. properties of such systems, based on
a simple model involving ideal, point-like Josephson junctions and lumped induc-
tances, was carried out in Refs. [3, 4]. In particular, it was shown in Ref. [4] that
these properties can be derived from the stationary value problem for a properly
defined potential energy function.

Section 2 of the present paper gives a concise and systematic exposition of the
previous results, highlighting on the relations between stationary superconducting
phase differences across the junctions and other variables describing the system
state. These relations previously were not subject to a detailed investigation. We
show that the behavior of stationary energies and the corresponding stationary
values of observable quantities (d.c. current through the system and magnetic flux
applied to it) is completely determined by the geometry of the locus of stationary
phase points related to the two weakest junctions of the system. In Sec. 3 the
theory is applied to a more detailed (numerical) analysis of the simplest possible
arrangement involving series junctions, a (2+1)-junction superconducting inter-
ferometer. We use this example to discuss the analytical properties of stationary
current versus applied flux patterns. Conclusions are presented in Sec. 4.

2. General theory
We consider a superconducting interferometer composed of two parallel ar-

rays of series connected Josephson junctions. The junctions will be treated as
lumped elements (point-like devices) and the effects of magnetic field will be ac-
counted for by assuming that the arrays include also series (lumped) inductances.
The interferometer is supplied by d.c. current J from an external source and is
linked by an externally applied magnetic flux Φ e . A particular example of the sys-
tem with only two series junctions is shown in Fig. 1: on the left side we show
the possible arrangement of superconducting grains which would give rise to the
circuit schematically represented on the right side.

The system is best described in terms of superconducting phase differences
φni across the junctions, where n = 1, 2 refers to the array and i = 1, 2, ... Nn to
the junction in this array. We need also to introduce the critical currents of
the junctions, the currents Jn through each array and the total magnetic flux

Φ

linking the circuit

where Φi denotes the flux induced by current	 Using the φni variables, the
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potential energy G of the system (current source and external magnetic field in-
cluded) can be expressed as [4] (cf. also [5]):

where

and L is the sum of series inductances Ln in each array, L = L1+ L2. For fluxes
we use the units of flux quantum Φ0, while the inductances are expressed in units
of henry/Φ0.

The first term on the right-hand side of Eq. (2) represents the potential
energy of the Josephson junctions, the second is the total energy drawn from the
current source in the process of increasing the phase across each junction from
0 to φni, and the third is the magnetic energy stored in the system (and in the
external field).

Equation (2) is obviously not sufficient to describe the system completely,
since it involves the quantities Jn and Φ, so far unrelated, although implicitly
assumed to be explicit or implicit functions of the qni variables. The missing link
can be established by Eq. (1) and by the fluxoid conservation relationship

where q is an integer, assumed further equal to zero. An alternative choice for a
constitutive relation is Eq. (1) and simply the induced flux definition
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Equation (2) can be used to investigate the non-equilibrium behavior of the
system, but we limit our interest to the stationary system states. From physical
point of view a stationary system state means that the current J drawn from the
source and the externally applied flux Φe are constant while the energy is extremal.
Let us, therefore, examine the extrema of G relative to the conditions

The treatment of Φe deserves a comment. At a first glance it seems that the
second of Eqs. (4) is trivial, since Φe is an independent variable (it can eventually
depend on time, but time-dependent processes are a priori excluded from the
present theory). However, this argument is a fallacy and Φe is not an independent
variable in the considered problem. It has been already observed by Pelka and
Zagrodziński [6] that current and magnetic field in a Josephson junction, if specified
together with the superconducting phase difference, must be self-consistent.

Observe that Eqs. (4) standing alone can be interpreted as a stationary value
problem for J and Φe. Another possible interpretation following from the implicit
assumption of Kirchhoff's law for currents is that we are dealing with the problem
of equilibrium distribution of a given current J into J1 and J2 with external flux
as a parameter.

We assume initially that all phases φn i are independent. The currents J,
will then depend on all of these variables

and similarly Φe, with the reservation that Eqs. (4), in general, allow to eliminate
one of the φni.  Since it is not really important which phase is made dependent,
we will denote it by φ*.

The extrema of G will occur among those points at which all first order
derivatives of G are zero. We must have, therefore,

where 'kj stands for the involved derivative
Since Eq. (5) must occur for all kj, it is clearly seen that the Josephson equations

constitute a necessary condition for the existence of an energy extremum. It suffices
that these equations are satisfied only at the extremum, but for later use we will
assume now that they constitute an additional constraint imposed on the system
and are differentiable.

Taking into account Eqs. (6) and (4), Eq. (5) is reduced to

It is seen from this result that if the constraint

dΦe

= 0, Eqs. (4), are replaced
by dΦ = 0, seemingly in the spirit of fluxoid conservation, then the corresponding
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relative extremum occurs only at Φ = 0. With our constraint, it is easily shown [4]
that if one of Eqs. (3a) and (3b) is assumed to be generally valid, then the second
one is obtained as a sufficient condition for the existence of energy extremum.

In proof, let us asume that the fluxoid relationship Eq. (3a) is a constitutive
(differentiable) relation for the functions involved in Eq. (2). Equation (7) yields
then

Clearly, the extremum is either coincident with the minimum of the parabolic
magnetic energy term

or it is a local extremum, which requires

i.e. as a consequence of the initial assumption we obtain the differential form of
Eq. (3b). We note alSo the trivial conditions J1'kj = 0 and J2'14 = 0, corresponding
to current expulsion from one of the parallel interferometer arms, i.e. to a situation
in which magnetic interaction vanishes (at least within the scope of the present
theory).

Let us assume now that it is Eq. (3b) which takes on the role of a definition.
Equation (7) is then

i.e. we obtain Eq. (3a) for q = 0. This complementarity of the fluxoid and induced
flux is an unexpected but aestethically pleasing development of the theory. It should
be pointed out that this result relies heavily on consistent usage of signs in Eqs. (1)
and (2), determined primarily by the orientation of the fluxoid integration path
with respect to J.

In order to fix attention, let us return to the assumption of constitutive
character of Eq. (3a) and 1et us proceed with effective solution of the considered
problem. We need to conduct first some ordering operations. Equations (6) are
clearly redundant and the number of independent variables φni can be reduced to
two. Let the indices ni be ordered so that Ini < Inj for i < j and let I11 < I21.
The indices n1 will be further abbreviated to n, in anticipation of the special role
the weakest junction in each array is going to play. We introduce also the notation
α = I1/I2 , αni = In/Ini. Then Eqs. (6) for n = 1, 2 and i > 2 are rewritten as
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which cannot be entered without exceeding the critical current In.
The system is now completely described by the phase differences φ1 and

φ2 across the weakest junction in each array and by the "state vector" (m) =
(m1, m2) with N1 + N2 - 2 components (m)ni = mni *. Moreover, the remaining
two Eqs. (6) and Eq. (3a) relate 91 and W2 to each other. Choosing φi, the phase
of the weakest junction of the system, as the independent variable, applying the
method of implicit differentiation to Eqs. (4) and using the Josephson equations
as an additional constraint, we obtain after some manipulations [3] the necessary
condition for a phase point (φi , φ2) to be stationary

where

and βn = 2πLnIn . Equation (9) must be solved numerically for φ
(m)2 (φ1) [or φ(m)1 (φ2)], the locus of the stationary points (φ1, φ2), dependent on the state

vector (m) assigned to the system.
In general, the solution does not exist for an arbitrary value of φ1 or φ2 92. This

can be easily shown in the case of a two-junction interferometer. Then β(m)n = -βn
and Eq. (9) in x = (cos φ1) -1 and y = (cos φ2)-1 coordinates is a straight line

x + αy - α = 0, α= β1 + aβ2,

everywhere except inside the region bound by the lines |x| = 1 and |y| = 1. The
importance of the parameter α in the analysis of a two-junction interferometer
was first realized by Fulton, Dunkleberger and Dynes [8]. Intersection points of
the solution line with the region boundaries define the forbidden ranges of φ1 and
92, which are void only for α = 1 and β1 = β2 = 0. In the general case of nonlinear
β(m)nthe straiglt solution lines are replaced by curves, but the overall picture
is not greatly changed, as is demonstrated in Fig. 2 for the particular case of the
system shown in Fig. 1, i.e. N1 = 2, N2 = 1, I 1 = 0.8, I12 = 1.0, I2 = 0.9, β2 = 0.5,
and two values of β1 = 0.5, 1.0.

From the above observations it can be deduced that the plots Of' ) (φ1 ) form
on the φi, φ2-plane closed, periodically spaced loops (in direct analogy to fluxon
vortices), separated by regions where stationary solutions cannot exist. In Fig. 3
we show the phase patterns resulting from the plots of Fig. 2. The existence of
such loops or phase vortices was recognized in the two-junction case by Tsang and
Van Duzer [9].

The appearance of forbidden gaps in the ranges of stationary phases

β(m)n

is not related to the gaps in the introduced by Eq. (8). The latter cannot be

*Asigning a phase state to a speciflc system, we will use the notation (m)-, the subscript
"—" to reinind of the minus sign in Eq. (1) (earlier usage was different, cf. [3, 4]).
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crossed without current being first expelled from the relevant junction array while
the former can be bridged by any non-equilibrium process.

Assuming that the Josephson equations, Eq. (6), and fluxoid conservation re-
lationship, Eq. (3a), are always satisfied, while the induced flux definition, Eq. (3b),
occurs only at the energy extremum, we are essentially considering a situation in
which the superconducting phases adjust immediately to the instantaneous val-
ues of J1, J2 and Φ but these values lag behind the changes in Φee. Under these
assumptions it is also possible to calculate the second derivative G"(m) of G(m)
with respect to φi . Differentiating Eq. (5) we arrive after some manipulations at
the result [4]:

where

and .1.(m) denotes the flux calculated from Eqs. (3a), (8), and (9). By calculating
the sign of this expression it is possible to identify the stationary points as energy
minima, maxima, and inflection points.
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3. Stationary states

Some insights into the system's behavior can be gained from numerical
solutions of Eq. (9). Obviously, only a limited number of situations can be re-
viewed in this manner. We have chosen the simplest possible example, that of a
(2+1)-junction interferometer, whose state vector has only one component. Circuit
parameters are those indicated in Fig. 1.

The key to understanding the stationary properties of the system is in the
inverse cosine plots of Fig. 2 and in the resultant phase plots, shown in Fig. 3.
As seen, the loops (vortices) of the stationary phase points φ( m)2 ((φ1)are covering
more or less tightly the phase plane and their centers form a square lattice with
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lattice constant of 2π. System properties are determined by the "unit cell" of this
lattice with lattice points at the corners and in the center of a square with 2π
sides. The gaps between phase vortices indicate, as already observed, the regions
where stationary solutions do not exist. Gap magnitude clearly depends on the
N's and system state. As a consequence of these gaps, the stationary phases can
change continuously only on a vortex line and jump discontinuously from vortex
to vortex. An interesting exception from this rule, marking the beginning of a
dramatic change in the unit cell of (0)_ state, is shown in Fig. 2b for a particular
value of β1 = 0.7.

The existence of flat phase fronts, where the derivative of one phase with
respect to the other tends to infinity, may be related to the mechanism causing
the vortex-tovortex transitions.

It is clear from the preceding section that a stationary value of current, given
by Eqs. (6) and Kirchhoff's law must correspond to each stationary phase point
φ(m)2, (φm )2

Similarly, one can calculate from Eqs. (3) and (8) the corresponding stationary
value of externally applied flux

where σn(m')denotes the sum of stationary phases in the relevant junction array.
Finally, from the above relations and Eq. (2) the stationary value of energy G(m)
can be evaluated. The next obvious step following these transformations is to
replace the phase representation by a more convenient one, in which e.g. J(m) and
G(m) are considered to be functions of Φe(m). It might be said that from an upside
down position, in which the parameters like total current and externally applied
flux — instinctively believed to be independent variables — were treated as being
out of control, we are now gradually working to a more normal point of view.
Such an interpretation, however, might be misleading. The theory provides only
the means to check whether the experimentally applied J and Φe are a stationary
pair (J(m),Φe(m)) .

Suitably normalized graphs of the functions J(m)(Φe) and G(m)(Φ e) (we
drop the unnecessary superscript (m) from Φe designation) are shown m Fig. 4
for (m) = (0)- (solid lines) and (m) = (-1)_ (dashed lines). Only negative values
of J(m)(Φe), normalized to Imax = + I2, cf. Eq. (11), are plotted. Full current
plots can be visualized by taking into account their C2 point symmetry (see also
Fig. 5). Energy is scaled by a factor of L/(πlmax), i.e. taking into account that
L was defined as L a L/Φ0, it is normalized to Josephson coupling energy of a
junction with critical current Ic = Imax and multiplied by true total inductance of
the interferometer loop. The reference level of energy was set equal to G0)(0) for
β1 = 0.5. The linewidth used to plot the graphs carries the additional information
about the sign of the second-order derivative of G(m) with respect to φl , calculated
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from Eq. (10): thick lines correspond to positive sign or local minimum of energy (in
the phase space), thin lines — to negative sign or local maximum of energy. Thick
lines denote thus the stationary system states which are stable with respect to
phase changes. Stable and unstable solution branches appear to succeed each other
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at haphazard. Interpretation of these data might be helped by the observation
that the energy surface corresponding to each phase state, stretched over the
91 , 92-plane is composed of a series of twisted Riemann sheets. The contour of
stationary energies on any sheet is continuous and its projection on the plane
is just a phase vortex. As it has been already explained, we are using another,
one-dimensional projection in which a pair of φ1 , φ2 coordinates is replaced by a
single Φe value.

The plots in Fig. 4 look quite complicated, but their general structure is easily
explained by the underlying lattice of stationary phase vortices. Lattice points, i.e.
vortex centers, are located at (pπ, , qπ), where p, q are integers of the same parity
(Fig. 3). Let us consider, Φe range corresponding to a given vortex. Let Φe be
minimal at a phase point with coordinates φ1 ( 1 ) = φπ - δ1 and φ2 ( 1 ) = rπ+ δ2,
where δ1 and δ2 are as yet undetermined. From the vortex symmetry it follows
that the point with coordinates φ12) = qπ δ1 and φ2(2) = rπ - δ2 is also on the
vortex line and the corresponding Φe value is maximal. Equation (12) yields then
for the flux range in the particular case of the system shown in Fig. 4:

where the upper sign inside the curly braces refers to q, r even, the lower sign to
q, r odd, and m, φ012 have the same meaning as in Eq. (8), in particular φ(0)12 ( δ1) =
arcsin(α12 sin δi).
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The expression for. Φeqr can be easily extended to cover the general case: the
(m = mn i)-dependent terms must be summed up over ni, i ≥ 2. We will not use
this extended version but will make some cosmetic changes in its present form.
Instead of the π-multiples q, r let us number the vortices by q', r' introduced by
q = 2q', r = 2r' for lattice parity p = 0 or q = 2q' + 1, r = 2r' + 1 for p = 1. We
will introduce also explicitly the width Δp(m) (cf. Fig. 5) of the interval occupied
by Φe q* = Φe qir' ,p . Then

and

As seen, the ranges of Φe for m-even states are centered around integer multiples of
Φ0, while for m-odd states the center is shifted for 1/2Φ0. Next it can be observed that
Φe 9 'r ' is a linear function of one of its indices if the other one is kept constant,  i.e.
if the phase vortex lattice is run over in horizontal or vertical direction. However,
if the lattice is traversed in any (constant) diagonal direction, the flux range is
always the same.

Now, Φe q'r' is the domain of J(m)(Φe) and G(m) (Φe ), both limited to the
single relevant phase vortex. From Eq. (11) it is evident that the closed vortex line
must be transformed into a closed current pattern and from the same equation and
Eqs. (13) it is obvious that this pattern will be periodically repeated every Φ0, on
condition that vortex-to-vortex transitions are along horizontal or vertical lines on
the φι, φ2 plane. That is exactly what would be seen in Fig. 4 if the current graphs
were completed by positive values: each would form a closed pattern resembling
in shape a distorted ace of diamonds (cf. [3]).

G(m) is not a periodic function of the phases and each phase vortex must
have a unique energetical signature. However, energy contains periodic terms and
it can be shown that the graph G(m) (Φe q'r') forms also a closed loop, composed
of two twisted branches (as in figure 8 or ∞), which correspond to positive and
negative current directions, the twist occurring between flux points corresponding
to J(m) = ±Imax. This is not shown in Fig. 4, where in order not to clutter further
the drawing only energies corresponding to negative currents are plotted. In fact,
we are applying a convention in which only a diagonally cut slice of each vortex is
used. The horizontal and vertical movements across the vortex lattice ((m) fixed)
in this convention are equivalent to monotonic changes of φ1 and φ2 , respectively.
Energy looping, which can be discerned in Fig. 4, is caused by the already discussed
appearance of identical flux ranges for q' = q'0 , r' = r'0 and q' = q'0 + 1, r' = r'0 + 1.

Not much more can be said about the general properties of the graphs in
Fig. 3 without some attempt at determining δ1 and δ 2 in Eq. (13b). Analyti-
cally it might be quite difficult, but a heuristic approach is suggested by the cur-
rent graphs. A current pattern must span the entire width of Φe 'q'r' . Figure 4
shows that the flux span of the wide current_ patterns extends from the flux at
which J(m) = Imin to the flux at which J(m) = -+min, where Imin = I1 - I2
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(the designation used in d.c. SQUID theory, cf. [7]). On the other hand, in deriv-
ing Eq. (13b) we have assumed that the flux range limits correspond to the phase
points φ1(1, 2) = qπ F δ1 and φ2(1,2) = rπ ± δ 2 . It follows immediately that

or = δ2 = π/2. (Some objections may be raised at this point. For the points
φ1(1,2) and φ2(1,2) to be on the vortex line, δ1 and δ2 must satisfy Eq. (9), which
has a singularity for cos φ1,2 = 0. Strictly speaking, a limit should be taken on
approaching this singularity, but we consider it is sufficient that numerical solutions
exemplified in Fig. 3 confirm our choice of δ 1 and δ2 .) With this result Eq. (13b)
simplifies to

where Ψ12 is the phase gap of junction "12" , defined by Eq. (8), and β = ί ι +β2.
It is seen immediately that the overlap of two consecutive flux ranges, gyp"` ) , can
be expressed as

Equation (15) is valid for the wide current patterns of Fig. 4, i.e. for large phase
vortices of Fig. 3. Inspection of narrow .I( -1 ) graphs in Fig. 4, corresponding to
the small vortices in Fig. 3, shows that instead of Eq. (14) one should use the
condition

which together with Eq. (9) allows to determine δ 02 ≤ δ01 ≤ π/2.
Equation (14) suggests that another characteristic flux range can be intro-

duced and easily determined: the distance Θp(m)between the maxima of |J(m) | =
Imax , which is a measure of current pattern skew (Fig. 5). This is clearly the differ-
ence between fluxes corresponding to the phase points (‚01(3) = qπ + δ1 , 92(3) =
rπ + δ2 ) and 00 1 (4) = qπ - δ1 , φ2 (4) = rπ - δ2 ), and in order to determine Θ p(m)it
suffices to replace δ 2 in Eq. (13b) by -δ 2 . In this manner we obtain for the wide
current patterns

It should be observed that in Eqs. (15) and (17) the contribution from the
series junction "12" is in the same class as the contributions from inductances
L1 and L2. This is not surprising, since series junctions constitute, in fact, an
additional nonlinear inductive load on the system. Let us also note that the listed
equations can be used for approximate, linearized construction of the stationary
current and energy vs. external flux patterns, what may be useful in high-T c d.c.
(multi junction) SQUID design. Our results for flux ranges are a generalization
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of the results obtained by Tsang and Van Duzer [8] for the particular case of a
2-junction interferometer.

A very important question must be asked now: is the topological sum of all
flux ranges, given by Eq. (13a) for fixed (m), equal to the set of all real numbers?
In other words, we are asking whether for any given Φe value there exists always
a stationary current J(m) (Φe). The answer appears to be positive even if the in-
ductive term in square brackets in Eq. (15) becomes negative, but once again the
analytical proof is missing. We are left to numerical experiments, which reveal a
very interesting mechanism imbedded in Eq. (9): the product of the inductive term

and (-1)p is always non-negative, hence Δp (m) ≥ 0. Whenever the inductive term
becomes negative, the phase vortex lattice points are switched to odd multiples of
π. How this mechanism takes hold is illustrated in Fig. 3 for (m) = (0)_, where
for β1 = 0.5 the inductive term is positive and p = 0 (Fig. 3a), while for β1 = 1.0

it becomes negative and p = 1 (Fig. 3c); the intermediate situation Δp(m) 0,
shown in Fig. 3b, occurs for β1 = 0.7. Similarly, phase vortices of a 2-junction
interferometer for which the inductive term must be always ≤ 0 are located at odd
multiples of π, i.e. p = 1.

From the preceding discussion it follows that the 4 m) interval is shared
by the neighboring external flux ranges of the same phase state, eo ipso by the
neighboring current and energy patterns. However, the lower limit of this range
corresponds to J(m) = -lmin , while the higher limit to j(m) = Im in . It means that
a vortex-to-vortex transition involves an abrupt redistribution of currents J1 and
J2 (cf. also [8]). Such transition is clearly a dynamic process and its particulars
would depend on dynamic properties of the system. The positioning of the series
junction(s) on the edge of phase gap must also favor in the discussed flux interval
the initialization of transitions between different phase states. Even without such
transitions the overlapping flux ranges corresponding to different currents (and
energies) indicate hysteretical behavior of the system.

The transport properties of the system are determined by its critical current
Jmax(Φe), defined as the maximal d.c. current which can be drawn from the current
source at a given Φe without driving the system to the resistive state. Since J(m)
are by definition extremal currents, we can determine the critical current from the
relation

i.e. assume that Jmax(Φe) is the envelope of all I(m) (Φe ). The relations between
stationary currents and fluxes are completely symmetric and we could determine as
well critical flux Φe max(J) in function of the applied current J, but as long as this
is understood, there is no need to do it explicitly. The definition of Jma x takes for
granted that transitions between different phase states are possible, as discussed
in Ref. [3] and [4]. However; for the system to exhibit always the critical current
given by Eq. (18), the transitions should occur always at the crossing points of
relevant currents J(m), at least in the envelope region.
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The transitions between different phase states of a junction must occur via an
intermediate normal (resistive) state of the weakest junction in the relevant array
[3]. While it can be imagined that a spontaneous transition from a metastable to
stable state could occur if these states have the same stationary energies, currents
and fluxes (several such triple points can be observed in Fig. 4), nevertheless in
general we must associate the transitions with changes in current and flux bias
conditions, which threaten to drive the system permanently normal if it does not
change its phase state.

In the presence of a constant current bias the transitions will be enabled
whenever J(m> (Φe) descends below the bias value. If the bias current J exceeds
Imax, the system can always levve superconducting state exhibiting the envelope
value of the critical current. This observation might be helpful in the interpretation
of experimental data on magnetoresistance of high-Τc materials [9]. However, it
must be observed that the current envelope does not wholly coincide with the
energy envelope.

In Ref. [4] the system's evolution in varying external flux was assumed to be
governed by the following rules:

1.When two states have equal stationary energies, the system makes a tran-
sition to the stable state. If both states are stable, the transition is to the state
with negative energy slope with respect to flux change.

2. When the evolution leads beyond a phase vortex limit, the system makes
a transition to a state of lower energy.

Application of these ules leads generally to hysteretic system behavior, de-
pendent on its past.

Although plausible, the above ules cannot be considered as strict ones.
The response of the system to external flux changes must be determined by its
dynamic properties. The foregoing remarks could be considered even as pure spec-
ulation if the experiments of Fulton, Dunkleberger and Dynes [7] on highly induc-
tive two junction interferometers have not put into evidence the phenomenon of
multiple critical currents, and have not shown that in dynamical situations the
equilibrium currents below the envelope can take on the role of critical currents.

The envelopes shown in Fig. 4 exhibit the effect of "spurious" or "secondary"
modulation. The combination of this effect and that of hysteretic multiple critical
currents was possibly observed in some high-Τc d.c. SQUID measurements. The
same combination might be also responsible for the rather poor fit of experimen-
tal and theoretical data in experiments on microwave emission from high-Τ c thin
films [2], where only parallel arrays of junctions were used in the theoretical inter-
pretation. Let us also observe that the crossing energy levels provide a set of two
energy wells required by the twolevel fluctuator model of random telegraph noise
observed in high-Τ^ thin films [9].

4. Conclusions

In conclusion, we have shown that stationary properties of a generalized
superconducting interferometer, comprising series as well as parallel Josephson
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junctions, can be derived from the potential energy of the system constituted by the
interferometer, its current source and external magnetic flux. In particular, we have
shown that critical current of the interferometer corresponds to local extremum
of this energy and we have provided analytical tools which, supplemented by
numerical methods, can be used not only to evaluate this current but also to find
whether the corresponding energy extremum is a minimum or a maximum.

Acknowledgments

Many stimulating discussions with J. Zagrodziński are gratefully acknowl-
edged. The author wishes also to thank Z. Potocki for his help in designing Fig. 1.

References

[1] P. Bernstein, S. Lamartí, J. Bok, Solid State Commun. 75, 587 (1990).
[2] G. Jung, J. Konopka, Europhys. Lett. 10, 183 (1989).
[3] S.J. Lewandowski, Phys. Rev. Β 43, 7776 (1991).
[4] S.J. Lewandowski, Phys. Rev. B, in press.
[5] M. Klein, A. Mukherjee, Appl. Phys. Lett. 40, 744 (1982).
[6] J. Pełka, J. Zagrοdziński, Physica B 154, 4573 (1989).
[7] T.A. Fulton, L.N. Dunkleberger, R.C. Dynes, Phys. Rev. Β 6, 858 (1972).
[8] Won-Tien Tsang, Τ. Van Duzer, J. Appl. Phys. 46, 4573 (1975).
[9] G. Jung, M. Bonaldi, S. Vitale, J. Konopka, J. Appl. Phys' 70,5440 (1991).


