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The solid-on-solid model, with nearest- and next-nearest neighbour interac-
tions, of two-dimensional nucleation on the surface of a crystal in unstable
equilibrium with its supersaturated vapour allows from the local mean direc-
tion of curved step to derive closed formulae for the shape, the area, and the
activation energy for growth of the crystal nucleus. The formulae facilitate
to estimate frk the observed shape patterns the parameters of nucleation,
to follow the evolution of the crystal nucleus with temperature and the de-
pendence of activation energy on distance between screw dislocations which
provide steps on the crystal surface.

PACS numbers: 61.50.Cj, 64.70.Hz.

1. Introduction

Crystal nucleation and equilibrium crystal shapes in D = 2 dimensions, with
nearest-neighbour (NN) interaction between the atomic constituents, are described
by the Ising model [1-5]. When the crystal lattice has square symmetry the Ising
model free energy has proper fourfold symmetry.

To study equilibrium crystal shapes with the nearest- and next-nearest neigh-
bour (NNN) interactions the solid-on-solid (SOS) approximation of Burton, Cabr-
era and Frank (BCF) [6] is used. The SOS model fails to possess the exact four-fold
symmetry of the square lattice [1-3, 7] but the deviation from this symmetry is
proportional to Texp(—J/kBT), thus is negligibly small at low temperature T for
typical values of the NN interaction energy parameter J = 1/4. In the SOS model
of BCF the equilibrium crystal shape, the crystal nucleus area in D = 2 dimen-
sions and the activation energy for nucleation can be eXpressed by closed formulae
which are derived below.
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2. Equilibrium structure of step

When the crystal bulk correlation length is small, the crystal interface can
be modelled as a twodimensional surface and the dominant fluctuations of this
surface are steps or ledges [8-14]. A crystal in unstable equilibrium with its super-
saturated vapour has curved steps appearing on the surface. BCF considered the
surface of a simple cubic crystal with NN and NNN interaction energies 1 and

2, respectively. With the Boltzmann constant kB and β-1 = kBT the Boltzmann
factors are  = exp(- 1,2β/2) in the notation of BCF. We write  = 2.For
a vapour saturation ratio α BCF give an explicit expression for the local mean
direction of a curved step at point x. The angle θ(x) between the step and the
[0, 1] crystal direction is given by

where u = αx = exp(x in α), and

To express u as function of tgθ(x), solution of the quartic equation in u,
Eq. (2.1), is necessary. We use Eq. (2.1) from the value x = 0 where θ = 0 up to
a maximum value xM determined by θ = -π/4, i.e.

tgθ(xM) = —1. (2.4)

The positive root uM of this quartic equation gives xM = (ln uM)/ ln α, and tends
to the value uM = c2/(1 + (1 + c2/c5) 1 / 2 ) for low temperatures. If 2 = 0, then
uM = c2/2. The value xM corresponds to the crystal boundary point on the crystal
diagonal.

3. Shape of two-dimensional nucleus

For the vapour saturation ratio α > 1 the step, or the crystal nucleus bound-
ary, has a finite radius of curvature [3, 6]. BCF have given explicit formula for the
step shape from which the equilibrium crystal shape in D = 2 dimensions can be
stated. The dependence of the y Cartesian coordinate on the x Cartesian coordi-
nate of the crystal nucleus boundary follows from Eq. (2.1) by integration
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where

C6 = 1 1) 	C7 = 2 + c5. 	 (3.2)
The lengths x and y are measured here in units of the crystal lattice constant α L ,
and both are scaled by Inα. Equation (3.1) which gives y(0) = 0 and y < 0 for
x > 0, is used up to the maximum value x = xM. For larger x the mirror reflection
in the x = y l/2 square diagonal gives the crystal nucleus shape with square
symmetry [2]. Zia et al. [2, 3] discussed the SOS approximation for the square
lattice. The edge free energy obtained by taking the SOS for polar angle from 0
to π/4 and using fourfold symmetry to get the rest would have a kink at π/4,
but deviation from the Ising model crystal shape is small for low temperatures
and small angles [1-3]. Therefore the use of mirror reflection in square diagonal
is not a bad approximation. On a square lattice it is appropriate to use as linear
dimension of the nucleus its half-diameter xL = xM - y(xM) = l/2. At very low
temperatures, if 2 = 0, x1, differs little from xM and the nucleus becomes square.
If 2 > 0, it becomes an octagon.

4. Area of the nucleus

The area of the crystal nucleus in D = 2 dimensions can be expressed starting
from Eq. (3.1). If the NNN interaction energy is restricted to 0 < 2 < 1 /2, the
area α(x) between the [0, 1] or x axis and the crystal nucleus boundary given by
Eq. (3.1), i.e. between x = y = 0 and x, y(x), can be expressed by the integral

where

and

is the dilogarithm function [15]. For x > 0, since y < 0, also α(x) < 0. At given
temperature, the ratio of the actual area n 0 of the crystal nucleus to the area 1 2

of the square circumscribed on it, can be expressed by

Typical values of the area ratio are given in Table for two values of the NNN inter-
action energy. Our computed value of n0/l2 corresponding to the BCF parameters
for iodine crystal agress within 1% with the value obtained graphically by BCF.
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5. Activation energy

Microscopically the diameter of the crystal nucleus is expressed in terms of a
multiple of the crystal lattice constant, as in Eq. (86) of BCF [6]. Macroscopically
the diameter of the critical nucleus at a given saturation ratio α can be measured by
the distance d between two opposite sign screw dislocations whose Burgers vection
protude normal to the crystal surface, say at points P and Q. We refer to Fig. 15
of BCF, see also Uwaha and Nozières [13]. A critical nucleus of diameter 1 < d
can pass freely between two dislocations. When 1 > d there are two equilibrium
positions: one, stable, with the nucleus boundary short piece PAQ, and the other,
unstable, with the nucleus boundary long piece PBQ. The nucleus growth requires
an activation energy Ad which is half the edge free energy of the boundary piece
PBQ minus half the edge free energy of the boundary piece PAQ. The free energy
of a boundary piece can be found by evaluating the area of the sector contained by
the piece and the lines joining its ends to the centre of the nucleus, for the given

as described in §16 and Appendix D of BCF. The ratio of activation energy
Ad at two dislocations, a distance d apart along the [0, 1] crystal direction, to the
activation energy A 0 for ordinary free nucleation, can be evaluated from the shape
and the area functions of the step, Eqs. (3.1) and (4.1), respectively:

for d = 2x when d < 2xM. As the dislocation distance d increases from 0 to 2xM
the nucleus boundary coordinate x increases from 0 to xM. As d increases from
2xM to 2xL = 1 the x increases from xM to xL. Corresponding to Fig. 16 of BCF
where each point of the plot was obtained by using planimetry, Fig. 1 gives the
calculated graphs of the ratio Ad/A 0 as function of d/l. When d approaches 1 the
activation energy Ad drops with vertical tangent to zero. At lowest temperatures
the dependence of Ad/A 0 on d/l becomes nearly polygonal. For Fig. 1 the value
of the NNN interaction energy 2 has been assumed near to 1/2 and hence at
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low temperature the boundary of the crystal nucleus becomes almost octagonal,
as seen in the lower part of Fig. 1(a), and in Fig. 2(b). At higher temperatures
the curvature of the nucleus boundary becomes almost direction independent and
the nucleus becomes nearly circular. For the D = 2 Ising crystal the surface free
energy has been expressed in terms of an elliptic integral by Zia and Avron [3].
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6. Concluding remarks

For a rough, i.e. stepped crystal surface in unstable equilibrium with its
supersaturated vapour, the D = 2 solid-on-solid model, with NN and NNN inter-
actions yields expression for the local mean direction of a step, and hence, by an
integration, for the shape of the crystal nucleus. A second integration gives the
nucleus area, and further the activation energy for nucleation between two screw
dislocations.

The closed formulae for the crystal nucleus area and activation energy com-
plement the formulae of BCF paper [6], and are useful for estimating from observed
step patterns the important parameters of nucleation. The shape and activation
energy of the crystal nucleus depend on the homogeneous vapour saturation ratio
by simple scaling relation, while their dependence on the atomic or molecular in-
teraction energies is more involved. The closed formulae for the nucleus shape and
activation energy make possible to follow the evolution of the crystal nucleus with
temperature and the activation energy dependence on screw dislocation distance.
Program for computing on a square lattice the nucleus shape and activation en-
ergy can be supplied on request. Further the twodimensional model is useful in
a survey of the twodimensional surface and cross sections of a three-dimensional
crystal.
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