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The incohorent scattering of electrons by layer adsorbed at a single crystal
surface is determined by the Fourier transform of correlation functions of ele-
ments forming this 1ayer. The model of the description of atoms or molecułes
adsorbed on the surface is formulated by the occupation operators which are
represented by the pseudospin operators. The calculations of the correlation
functions are performed by means of methods which consider a given pair
of elements embedded in the effective field of remaining elements of the sys-
tem while the interaction between the elements of the pair are taken in its
exact form. Two approaches are presented here, i.e. the cumulant average
and constant coupling approximations, and the case of binary chemisorp-
tion is considered in detail. The problem of the correlation symmetry is also
discussed.

PACS numbers: 68.35.—p

1. Introduction

One of the most important characteristics of a surface layer is the correlation
function describing some features of a crystallographic stucture with respect to
different kinds of disorder. The correlations reflect the statistical distribution of
elements at the surface (e.g. adsorbed atoms, molecules, impurities, defects) and
determine the cross sections for the scattering of particles (e.g. electrons, neutrons,
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X-rays) as well as the structural factors which can appear in the expression for
absorption and emission processes.

In particular, the diffuse low energy electron diffraction (DLEED) is an ilus-
trative example when the knowledge of correlation functions in the adsorbed layer
is required. This example was considered earlier [1] by means of the methods based
on the molecular field approximation and the Green function technique.

The methods presented there [1] take into consideration the interaction be-
tween one element of a system and an effective field produced by the rest of this
system. Usually, the correlations however refer at least to two positions of the
lattice sites and depend on the states of two elements appearing in the considered
sites situated at the distance R. It means that the correlations are a typical ex-
ample of the case when the characteristics result from the twobody interaction.
Therefore, the model assuming the pairs of elements embedded in an effective field
seems to be more suitable in order to reflect the natural properties of correlations.
There is a reason that the discussion of various methods in twosite cluster approx-
imation is presented here as a continuation of our considerations for correlation
functions reported in the previous paper [1]. The correlation functions found for
this approximation are applied to calculate the DLEED intensities for the complex
substrate with the disordered overlayer.

For the present considerations we use the model of the adsorbed layer pro-
posed by Le Bosse et al. [2] and utilized by us in [1]. The form of the adsorbate
plus substrate Hamiltonian for this model is

Hamiltonian H depends on the occupation operators σj (p), which characterize
state p of a site occupancy j on the surface crystallographic lattice. It contains the
quadratic term with respect to σj (p) responsible for the interaction of the pairs
of elements with the force constance Ujj' (p,p')and linear term with respect to

(p) describing the interaction between the adsorbate elements and the substrate
with the adsorption energy Ejads(p). N is a number of all elements of the adsorbed
layer, (pmax + 1) is a number of all occupation states of elements.

The correlation function is defined as usual

and it allows us to determine an incoherent intensity of LEED which is of the form
[2]

where k-f is a final state of wave vector k, l+i is an initial state of this wave
vector, K1(0)(p) describes the transition matrix of the p adscatterer located at



and

Two-Site Correlations in a Surface Layer ... 633

the reference site in the presence of the other adscatterers and of the substrate
surface and Ґ (p, p',kf- ← ki+) is the Fourier transform of the correlation function
γjj' (p,p') i.e.

where the translational symmetry in the plane of adsorbed layer is assumed; all
sites j as the sites of correlation centers are equivalent.

In our previous paper we have shown the possibility of expression of the
occupation operators σj (p) by the pseudospin operators, which allows us to use
the well-known technique of calculating the correlation functions in Ising model.
Substituting the relation:

to the Hamiltonian (1.1) and the expression (1.2) for correlation functions we have

where

play the role of external fields of the power (n) and effective interactions of the
power (n + n') with respect to the operator Szj, respectively. The coefficientsαpn
are determined by the system of equations

and they are collected in our paper [1] for several values of pseudospin S.
Taking into account the above results we can write the correlation functions

(1.2) in the following form:
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and the average values are calculated with respect to the Hamiltonian (1.6). In
order to calculate the correlation function γjj' (p, p') we should know the correlation
functions (1.9) of all the orders n, n'  (0, 2S) for the pseudospin operators
representing the occupancy of the considered sites.

Of course, all the average values appearing in the correlation functions are
taken with respect to the grand canonical ensemble i.e. the statistical operator is
expressed by the Hamiltonian H which relates to the chemical potential term as:

with the Hamiltonian H given by (1.6). Then the proper choice of μj(n)assures the
relations between the average values of the occupation operators, and in conse-
quence, the pseudospin operation ((Szj )n) and the parametersθcharacterizing the
degree of coverage.

The calculation of the correlation functions (1.9) for the systems described
by the Hamiltonian (1.10) can be performed by means of methods which consider a
given pair of elements embedded in the effective field of remaining elements of the
system while the interaction between the elements of the pair are taken in its exact
form. Since there are different ways to choose the effective Hamiltonian, we de-
scribe different approaches separately taking into account the most representative
methods, like the cumulant average as well as constant coupling approximations.

Of course, it is possible to combine the various methods together and to
calculate the correlations efficiently. For example, the generalized susceptibility can
be formed on the basis of the order parameter (Szj) obtained by means of constant
coupling approach. In this case the procedure is not new but it is equivalent to
the molecular field approximation with the coefficients found more precisely.

2. Cumulant average approach to two -site correlations

The starting point of the cumulant average approach to the calculations of
the twosite correlations is related to the average values of the operation (Szj)n
and (Szj)n(Szj')n' for n = 1, 2 ...2S taken with respect to the grand canonical
ensemble, namely

with the Hamiltonian H given by (1.10). The approach consists in the replacement
of the Hamiltonian H by its effective form which includes all the interactions
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between the considered site j and its nearest neighbours j" in the exact form. It
means that we divide the Hamiltonian (1.10) into two parts:

H = Hj + (H - Hj) 	 (2.3)

where the first term

corresponds to the considered site j and the second one formally excludes the
interactions referring to the site j. Then, the formula (2.1) can be rewritten as

hence

with

which are the parameters of the effective field with respect to the trace over j, but
which become the operation with respect to the states for j' ≠j.We rewrite the
Eq. (2.2) into the form

which leads together with (2.6) to the set of equations for different kinds of the
pair correlations. The relations include the correlations of higher orders, i.e. for
three, four or more operation (Szj)n. Therefore, we need to create new equations for
the three-site correlations, four-site correlations, etc., in order to solve the infinite
chain of equations, or we need to cut this chain in a proper place and to split the
correlations of higher orders into the pair correlations. Usually, the second way is
used and then the equations for the average values of the order parameter as well
as for the average values of the pair correlations are sufficient.

In order to obtain the set of equations in their form for the pair correlations
the function Fn(Xj(n) is not necessary to be known, because it is quite sufficient
to express the average value of Fn(Xj(n) by the following formula:

NeXt, using the properties of the δ function:
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and the relation

we can write the set of equations for the pair correlations in their explicit form
which depends on the crystallographic lattice, i.e. the distribution of the nearest
neighbours j" with respect to the site j. Thus, it is not possible to discuss the
problem in a general way but we need to assume details concerning the stucture.

From the general point of view we can remark that the equations depend on
the numerical coefficients which can be calculated only in the particular cases, it
means for the physical situations exactly defined.

In order to illustrate this method we consider here the case of adlayer which
contains one kind of atoms distributed at the square lattice. The degree of the
surface coverage θ is assumed to be less than 1, so any site can be occupied or
unoccupied. This particular chemisorption problem can be formally written as a
problem of magnetism for spin S = 1/2. In this case the pseudospin operator is
expressed by:

and the Hamiltonian (2.4) takes its form:

Taking into account (2.1) and (2.5) we obtain the following expression for the
average value of operator SI:

With regard to the identity (2.6), it means that in this case

We have to calculate the average value of the above expression, and for this
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purpose we use the Eqs. (2.10) and (2.11) which in this case become:

with j" = 1, 2, 3, 4.
Taking into account (2.6) and assuming that for each pair of sites j and j"

the pair interaction potentials are the same Ujj'11= U, we obtain:

Analogously to the above presented procedure, using the Eq. (2.8), we can obtain
the following equation for average value of  SzjSzj':

in the case when j and are the nearest neighbour sites (Fig. 1a) and

in the case when we consider the next nearest neighbour sites (Fig. lb). The
coefficients ak (k = 0, 1, 2 ...) are still given by the Eq. (2.19).

Let us define now for the sake of convenience:
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and in the first step of approximation we will put in the Eqs. (2.18) and (2.20)
Xn ≈ Xn1 where n = 1, 2, 3, ...:

with

b1 = a0+a1,

b2 = a1 + a2,

b3 = a2 + a3,

b4 = a3+a4..

With this approximation we can calculate the correlation γj1 = X2 — (X1)2

where the mean value of pseudospin X 1 can be expressed in terms of the degree of
the surface coverage 0, namely X1 = θ -1/2 and is calculated from the Eq. (2.23).

In order to calculate γj 1 more precisely and to have the possibility of cal-
culating also the correlations of father sites γj2, γj 4 , etc. (Fig. 2) we will use the
relations between cumulants defined in the following way:
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and the multi-correlation functions. From these general relations presented in [3]
we have the following approximated relations:

and so on, where cumulants of order higher than two are neglected as small enough.
As it is seen from above in the Eqs. (2.18), (2.20) and (2.21) can appear the
correlations of father sites. So, these equations form the set of an infinite number
of equations solved by the iteration procedure starting with X1 and γj1 calculated
from (2.23) and (2.25):

We can calculate as many correlations as we need cutting this iteration in the
proper place.
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3. Constant coupling approximation

The static pair correlations may be calculated on the basis of the effective
field whose distribution is associated with the local deviation of the order parame-
ter from its average value. The idea is related to the description of the fluctuations
in the mean density of elements by the pair correlation functions introduced be-
tween clusters of elements in macroscopically small cells, on the condition that the
linear dimension of the clusters remains small compared to the range of correlation.

There are two assumptions which allow us to express the correlation function
(1.9) by means of the effective field, namely: 1) the correlations between elements
at the sites j and j' may be replaced by the correlations between clusters, and
2) the statistical average of the product of fluctuations may be replaced by the
product of statistical averages. It means:

where δ(Szj)n = (Szj)n - ((Szj) n)denotes the local deviation of the operatorSzjfrom
its statistical average value. The pair correlations calculated on the basis of relation
(3.1) are valid at all distances with an accuracy depending on the correctness of
the introduced approximations by the assumptions mentioned above.

The symmetry conditions allow us to consider the origin of fluctuations in-
dependently of its position in the system. Thus, all the sites are equivalent and
therefore we can assume j = 0 for a site j given arbitrarily. Then the distance
j' - j = r denotes the position of the correlated elements.

In order to express the correlation functions in terms of the local effective
fields we consider the solutions for the Hamiltonian (1.6) in the constant coupling
approximation where the thermodynamic properties of a system of N elements are
described by the properties of a statistical pair of the nearest neighbouring sites
[4]. In particular, the free energy F of the system is given by the free energies of
pairs, i.e.:

where Nz/2 is the number of pairs of nearest neighbouring sites, z is the coordi-
nation number and E( 2) is the internal energy of a pair:

E(2) = Tr(p( 2 )H( 2)), 	 (3.3)

while S(2) denotes the pair entropy:

with k standing for the Boltzmann constant.
The pair density operator:
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is determined on the basis of the socalled effective Hamiltonian:

containing the effective field Hj(n) which corresponds to the molecular field when
a statistical pair of nearest neighbours is embedded in it.

The Hamiltonian H( 2) is defined by:

so that the Hamiltonian (1.6) may be written as H = ½NzH(2).
The long range order parameters (S*)n which appear in the entropy formula

(3.4) are defined by:

and they become independent of the sites j and j' because of the statistical char-
acter of the considered pair in the case of equilibrium conditions assuring a homo-
geneous distribution of the effective field. Taking into account the eigenvalues εv
of the effective Hamiltonian (3.6) we can define the quantities:

which allow us to express the parameters (3.8) by (S*)1 = f1 — f3  as well as the
free energy (3.2) in terms of the eigenvalues of the effective Hamiltonian which
contains the pair interaction in its exact form.

The application of the equations in the constant coupling approximation
to non-equilibrium conditions is accomplished by introducing into the effective
Hamiltonian (3.6) terms depending on the fluctuations (3.1) of the effective field
[4]. The considerations connected with the system described by means of the grand
canonical ensemble require to take into account for the effective Hamiltonian (3.6)
additional terms corresponding to the chemical potentials, i.e. to replace the Hamil-
tonian (1.6) by (1.10).

For the purposes of the approach to the correlation functions in the system
with the topological disorder fixed by the degree of coverage we consider the
effective Hamiltonian in the following form:
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where

which should replace the Hamiltonian He appearing in the Eqs. (3.3)-(3.5), (3.8)
and (3.9). Then the Hamiltonian H( 2) is replaced by:

so that the Hamiltonian (1.10) may be now written as H = ½NzH (2), respectively.
The effective fields hr(n) represent local fluctuations (3.1) and lead to the

results of local character for all the properties of the system. In particular, the
order parameters (3.8) become inhomogeneous in general, namely:

Therefore, it is convenient to introduce the short range order parameters:

which allow us to determine the average values:

with respect to the nearest neighbourhood appearing by the summation over δ.
It is worthwhile to notice that the internal energy of a pair (3.3) calculated

by means of the Hamiltonian (3.11) becomes the enthalpy due to the terms con-
nected with chemical potentials and then the free energy (3.2) becomes the Gibbs
potential:

respectively.
In order to calculate the behaviour of the effective fields hr(n) we apply the

variational procedure to the local Gibbs potential increase due to the appearance
of fluctuations, namely:



Two-Site Correlations in a Surface layer ... 	 643

where G0r,r+

δ

denotes the Gibbs potential independent of hr(n) and Gr,r+δ =

E(2)r,r+ δ - TS(2)r,r+δis found by the procedure describec above.
The effective fields hr(n) according to the Hamiltonian (3.10) appear in two

sites r and r + δ,whereδrefers to the nearest neighbours. We can pass to the
continuous variable r and expandhr+ δ (n) in Taylor series retaining terms up to the
second order. Then the Euler—Lagrange equation for the functional ΔGr leads to
the equations for the fluctuation of effective fields hr(n):

The solutions of (3.17) allow us to calculate the average values (3.14) which are
connected with the quantities:

appearing in (3.1) and determining the correlation functions. The index 0 in (3.18)
denotes the average value taken for (3.10) with hr(n)  = 0. Finally, we obtain:

where the constant Γno is related to h0(n) under some physical conditions at the
origin of correlations and it can be treated as the parameter of the theory.

The formula (3.19) reflects the symmetry relations, which means that the
correlations referring to an arbitrary site as their origin are equivalent, i.e. we can
always assume j' = j+ r and consider j = 0 as the origin of the coordinate system
for the site j given arbitrarily.

We discuss the correlation functions for S = 1/2 as an example in order to
show the details and the effective form of correlations. In this case the eigenvalues
εv (υ = 0, 1, 2, 3) of the effective Hamiltonian (3.10) are expressed by [4]:

where
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and belong to the eigenfunctions:

where

while the functions |+ +),|+ -), |- +), |- -), 	 stand for the basic system of the
product eigenfunctions.

On the basis of the Eqs. (3.20)-(3.31) we can write ΔGr and taking into
account the Eq. (3.17) we find the following equation:

for the molecular field hr1 which is associated with the correlation functions (3.19).
The parameter k12 is given by the formula:

while the relation (3.19) leads to the formula:

where =exp(1/2βU11rr+δ)..
The solution of the Eq. (3.32) is the well-known Ornstein-Zernike function

when the spherical symmetry is assumed as the boundary conditions for the solu-
tions of Eq. (3.32). The Fourier transform of this function is identical with that ob-
tained within the molecular field approximation with respect to the q dependence
while the coefficient k1 is slightly different as compared with the corresponding
factor in MFA.

However, in the case of the constant coupling approach the solution for the
correlation functions can be considered in a more general form taking various as-
sumptions which concern the symmetry of the correlations. When the symmetry
is assumed to be identical with the crystallographic symmetry of a sample the
solution of Eq. (3.32) can be found in the form reflecting the crystal symmetry
(cf. the behaviour of magnetic correlations discussed in [4]). The consequence is
quite important because of the behaviour of the Fourier transform as well as the
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cross section for the incoherent scattering of electrons. Therefore, it seems to us
very interesting to study the dependence of the correlations on the crystallographic
stuctures and to compare them with the experimental data which should be suf-
ficently sensitive to distinguish between different correlation symmetries.

4. Symmetry of the correlation functions

The variational principle applied to the calculation of the best distribution
of the correlations in the considered system shows that the correlations are deter-
mined by the differential equation whose symmetry remains to be defined under ad-
ditional conditions. This fact allows us to distinguish between the fluctuation—dissi-
pation theorem illustrated by the molecular field approximation [1] and variational
principle leading to the description directly in the lattice space. It seems to be quite
well justifled that the natural conditions for the correlation symmetry are given in
this case by the symmetry of the crystallographic lattice at least for the distance
of the nearest neighbours. Of course, the spherical symmetry of correlations for
long distances is more probable when the isotropic medium is considered. The
additional advantage of the crystal symmetry reflected by the short-distance cor-
relations is connected with the finite value of the autocorrelations while the spacial
correlations lead to the divergence at the origin of correlations.

The assumption of the crystal lattice symmetry correlations was discussed
in connection with the magnetic moment fluctuations [4] and their consequences
yielding the cross section of critical scattering in the elastic approximation. A
comparison between the calculations and experimental results for the magnetic
critical scattering of neutrons and particularly ferroelectric critical scattering of
X-rays shows that some features of the behaviour of critical scattering intensities
can be explained in a natural way when the correlation symmetry is introduced.
Thus, the analogy between the considered phenomena suggests that the correlation
symmetry should also play an essential role in the case explaining the behaviour
of the diffuse LEED intensities.

In a general case we can solve the Eq. (3.32) in the form:

with respect to the boundary conditions assuring the crystal lattice symmetry by
a proper choice of the function f(x,y,z). In particular, the function f(x,y,z) was
found for several stuctures, namely [5]:

for simple orthorombic lattice (α 2 β2 + γ2 = 1) [4], as well as

for body centered cubic lattice and
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for face centered cubic lattice. The case α 2 = β2 = γ2 = 1/3 in (4.2) corresponds
to the simple cubic lattice.

Taking into account the method used by Urbaniak-Kucharczyk [6] in order
to find the function f(x,y, z) in particular cases we report now some steps of the
general approach to this question confined to two dimensional lattices on which
our considerations focus.

The function f(x, y) should be function of coordinated x, y only. Thus the
Eq. (3.32) leads to the following equations:

which should be be satisfied by f(x,y) as independent of Kl.
In order to make the symmetry of correlation function for the short distance

in comparison with a lattice constant correspond to the symmetry of a lattice, the
correlation function should be invariant for the passing from one nearest neighbour
of reference site to another one by the rotation around the axis through this
reference site. If we assume that the reference site corresponding to the fluctuation
center is situated at (0,0) site then the positions of its nearest neighbours are
determined by the equations of planes passing through this reference site and its
nearest neighbours. Moreover, taking into account the symmetry of neighbours for
x = -x and y = -y we obtain the function f(x,y) in the form

where ξi comes from the equations of planes determining the positions of neigh-
bouring atoms, n is a number of the nearest neighbours of the reference site and
α is a parameter which can be calculated from (4.6).

The problem of the correlation symmetry also appears in the cumulant av-
erage approach to the two-site correlations. It is worthwhile to notice that the
problem mentioned above in the last case is even more evident and natural. The
correlation functions calculated on the basis of the set of proper equations show the
deviations from the spherical symmetry without any assumptions concerning the
symmetry of correlations. The results reported for Ising ferromagnets [7] indicate
that the symmetry is related to the crystal lattice. It is seen that for very small
distances, measured in lattice constant a, the curves corresponding to various
crystallographic directions become quite different. The magnitude of their splitting is
maximal at the critical temperature and it vanishes for temperature tending to
zero or to infinity. For any other temperature the correlation functions reflect the
crystal lattice symmetry.
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5. Final remarks

The present paper brings some methods for the two-site correlation function
descriptions. The methods are chosen representatively from the point of view of
different methodological approaches and different levels of approximation. The
models take into consideration the variational principle as well as the scheme
for direct calculations of the thermodynamic averages with respect to twosite
correlations given by the set of coupled equations. The methods presented in this
part are complementary to those reported in the first part of review [1], where we
considered the fluctuation-dissipation theorem and the Green function technique,
both discussed on the molecular field level.

We can see that the different approaches lead to similar results in general
but with evident differences for some features of correlations. In particular the
behaviour of correlations with respect to temperature shows quite qualitative dis-
crepances mostly below the critical temperature which depends on the coverage
degree. It is worthwhile to note here that the correlations are considered in the case
of grand canonical ensemble while the analogous calculations are performed usu-
ally in the case of canonical ensemble. This fact influences the critical behaviour
and reflects the discovered situation that the correlation behaviour at the critical
region depends strongly on the methods used for calculations.

Another question is connected with the symmetry of correlation functions.
This feature is also discussed in the present review and it is qualitatively more
coherent. First of all it is evident in the method of cumulant average applied
to twosite correlations that these correlations are of non-spherical symmetry as
natural properties of the system. This character of the symmetry can be easily
interpreted on the basis of the variational principle whose solutions can take the
form of an arbitrary symmetry. Their Fourier transforms represent then the specific
behaviour of the intensities measured in the diffuse LEED experiments. This be-
haviour can be approached directly by the solutions of the fluctuation-dissipation
theorem for which its Fourier transforms should reflect the symmetry but this con-
dition is usually neglected. Only the comparison between various methods draws
our attention to the fact that the condition in the symmetry does not touch the
spherical one but it can be applied in a more general form. Thus it is possible for
different approaches to be not contradictory.

The cumulant average approach seems to us to be the most convenient and
precise to calculate the correlations and to discuss their properties. However, for
the main purpose of the present considerations, i.e. for calculating the diffuse
LEED intensities we need to know the Fourier transforms of the correlations and
therefore we need a big number of correlations to be able to find their inverse
quantities. From this point of view the method is tiring. Thus, we think that
it is more useful to apply the molecular field approximation for temperatures
above their critical value where the different methods are qualitatively and even
quantitatively compared.
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