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We study the Anderson lattice with a weak hopping amplitude t and gener-
alized electron interactions. The interactions between f electrons, between
f and conduction electrons and between conduction electrons are taken into
account. An effective Hamiltonian in a second order perturbation in t is
derived. Using this Hamiltonian, we study superconductivity. Singlet d-like
superconductivity may occur in presence of the above interactions. In some
cases the interactions lead to suppressing superconductivity.

PACS numbers: 74.20.—z

1. Introduction

The purely electronic mechanism of superconductivity is an attractive prob-
lem. Bastide and Lacroix [1, 2] have given a convincing proof of the possibility
of this mechanism in the Anderson lattice model with a weak hopping parameter
t. In this work the authors have only taken into account the infinite interaction
between f electrons. However, in fact the interactions between conduction elec-
trons and between conduction and f electrons may be strong in comparison with
other parameters of the problem. In this situation, it is desirable to consider all
the parameters while resolving the problem.

We consider the Anderson lattice Hamiltonian of the form:
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Here, besides the quantities appearing in Ref. [1] we have introduced new
parameters: Uc  — the interaction between conduction electrons, Ufc— the classic
repulsion between conduction and f electrons and Jfc — the parameter of the
f–c exchange interaction. The expression of H can be derived, for example from
Ref. [3], for a lattice with a non-degenerated f-orbital and a non-degenerated
c-orbital on each site. As in Ref. [1] Uf is taken to be infinite. In Sec. 2 we will
find the atomic eigenstates. In Sec. 3 we will use these states to constuct an
effective Hamiltonian. Basing on this Hamiltonian we will study the possibility of
superconductivity in Sec. 4.

2. The atomic states

There are two one-electron states |Aσ) with lower energy EA and |Bσ) with
higher energy EB, for each spin σ. These states and their energies remain the same
as in [1]. For a site with two electrons there are two singlets and a triplet. The
form of these states is the same as in [1] but the expressions for cos φ and sin φ in
[1] must be replaced respectively by

The energies of the singlets and the triplet are respectively

There is one three-electron state |Cσ) for each spin. The expression for the
state is the same as in [1] and its energy is

3. Effective Hamiltonian

Using a perturbation technique [1, 4] we can construct an effective Hamilto-
nian which acts on the subspace of degenerated ground states Ω. In our approach,
the operator T plays the role of a perturbation. The results depend on the mean
number of electrons per site n. We will consider three possible cases: 0 < n < 1,
1 < n < 2 and 2 < n < 3.
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3.1. The case 0 < n <1

If Ufc , Jfc and Uc are equal to zero or small, the unperturbed ground state
is a mixture of sites with an electron on the state │Aσ) and unoccupied sites. It is
so when

These conditions are also needed for the validity of the perturbation expan-
sion. They restrict the region of values of Ufc, Jfc and Uc. The cases when the
conditions (7-9) are not satisfied need a further investigation. We will show by nu-
merical calculations that these conditions are satisfied for almost all typical values
of the interaction parameters.

Performing analogous calculations as in [1], we obtain the effective Hamil-
tonian H = H1 + H2a H2b,where H1 is the first-order effective Hamiltonian,
H2a is the second-order two-site effective Hamiltonian and H2b is the second-order
three-site effective Hamiltonian. The expression for H1 is of the form:

where t1 = tsineθ, α+iσis the operator which creates an electron in the state |Aσ)
on site i: α+iσ|i0) = |iAσ) and niσ= α+iσaiσ.Here we have introduced the parameter
U = ∞ to restrict our system to the subspace Ω. The expressions for H2a and H2b
are

Here i and j as well as j and ,l are nearest-neighbours, ni = ∑

σ

 α+i

σ

,ai

σ

 Si is
the spin operator: Szi = (α+αi↑ai↑ - a+ai↓ai↓)/2, 	S+i = α+αi
↑ai↓ S-i =a+i↓ai↑, and the operator Sil is defined as: Szil = (α+i↑ αl↑-a+i↓al↓)/2, S+il= α+i↑al ↓, S-il = α+i↓al↑. The

parameters in the expressions for H2a and H2b are
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3.2. The case 1 < n < 2

If the conditions (7-9) are satisfied in the ground state electrons occupy the
states |Aσ) and |S 1 ). The form of the effective Hamiltonian remains the same
as above if we introduce a new operator a+i σ which creates a particle Aσ on a
background of singlets S 1 : a+iσ |iS1 )= |iAσ). The state completely filled by singlets
S1 on each site now plays the role of vacuum. The parameters of H now have the
form:

where
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3.3. The case 2 < n < 3

If the conditions (7-9) are satisfied, the ground state is a mixture of sites
with three electrons in the state |C

σ

) and sites with two electrons in the state
|S1). We obtain again the same expressions for the effective Hamiltonian as above
if we introduce a new operator a+i

σ

, which creates a particle Cσ on the background
S1: a+i

σ

|iS1) = |iCσ).The expressions for the parameters now have the form:

where
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4. Superconductivity

The effective Hamiltonian derived above can be used to study superconduc-
tivity. For this purpose one first transforms the Hamiltonian to the Bloch repre-
sentation. The terms with t1 and t2 contribute to the kinetic energy. Retaining
only the terms responsible for superconductivity one can reduce the interaction
part H2 - t2 ∑α+a σalσ≡Gof H2 to the BCS extended form[1, 5]:

Among various terms of the expression for G the terms with Voddσσ'(k,k'))is
responsible for triplet superconductivity and the terms with Veven σ,-σ(k,k')is respon-
sible for singlet superconductivity. Here the index odd and even respectively mean
the odd and even parts with respect to k and k'. 

Vodd

σσ'((k,k')  is independent of spin
and can be written as:

where

where

For the investigation of the possibility of superconductivity we calculate the
coupling constants in three channels: Vs for the singlet s-like channel, Vd for the
singlet d-like channel and V for the triplet channel.
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4.1. The case 0 < n < 1

We find

The detail investigation of Vs shows that it may be negative. The interactions
of large value may lead to Vs > 0 and suppress superconductivity. For example,
Vs ≈ 3t2/2V > 0 for E0 = Jfc = 0, Uc >> V and Uf c > V, at the same time
Vs = -27t 2 /2V < 0 for E0 = Jfc = Uc = Ufc = 0. We note that Vs > 0 is a
sufficient condition for the absence of singlet s-like superconductivity, at the same
time Vs < 0 is a necessary but not sufficient condition for the presence of this
superconductivity because this superconductivity is also sensitive to the on-site
repulsion [1]. So if Vs < 0 one still cannot conclude definitely that singlet s-like
superconductivity is present. Because of this ambiguity we will not investigate the
s-like superconductivity in the following.

4.2. The case 1 < n < 2

Some interesting informations can be obtained when studying the limit cases
E0/V « -1, E0/V = 0 and E0/V > 1.

4.2.1. The case E0/V << -1, 1 < n < 2
On the assumption that |E0| 	 Uc, Ufc) Vfc| we obtain

Here we have used the conditions (7-9). Because Vd < 0, superconductivity
may occur in the singlet d-like channel [1]. The infinite on-site repulsion does not
affect the existence of this superconductivity because the pairing occurs only for
particles on neighbouring sites. We note that the absolute value of Vd is reduced
in the presence of the interactions.

4.2.2. The case E0/V = 0, 1 < n < 2
If Ufc = Jfc = Uc = 0 we obtain the results of Ref. [1]. The small values

of Uf c , Jfc and Uc may change a little the quantities Vd and V but the main
conclusions of Ref. [1] remain. Because of this we concentrate on the cases of large
values of the interaction parameters. In fact, among Uf c , Jf c and Uc , Jfc is the
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smallest and Ufc is the largest. We will study the case of very large value of Ufc:
Ufc » Uc, Jfc, V, t.

Using this condition and the conditions (7-9) we obtain

4.2.3. The case E0/V » 1, 1 < n < 2
If Eo/Ufc >> 1, E0/Uc >> 1 and E0|Jf c | >> 1 the conditions (7-9) are

satisfied automatically. The coupling constants are small, Vd = 0(t 2 /E0) and Vt =
0(t 2 /E0).

4.3. The case 2 < n < 3

4.3.1. The case E0/V << —1, 2 < n < 3
In this case the values of Vd, Vt are the same as in the case 1 < n < 2,

E0/V < -1.

4.3.2. The case E0/V = 0, 2 < n < 3
Ufc > Uc,Jfc,V,t, the coupling constants are small, Vd = 0(t2/Ufc) 	 /Ufc) and

Vt = 0(t 2 /Uf c ).

4.3.3. The case E0/V 	 > 1, 2 < n < 3
As in [1] the coupling constants are small, Vd = 0(t 2 V2 /E30) and Vt =

0(t2 V2 / E30).

4.4. Numerical calculations

As an illustration we calculate Vd and Vd for several values of the interac-
tion parameters. We assume that the model describes superconductivity in some
heavy-fermion rare-earth and actinide systems. From [6] we have some orientation
values of the parameters of a rare-earth system: Uf ≈100 eV, Uc≈2 eV,Jfc≈
—0.2 ÷ 0.2 eV, E0 ≈-2.5 eV, V≈0.15 ÷ 0.55 eV. The parametertmay vary
in a large extent, so we will not take a concrete value of t but express the final
rsults in t suggesting it is sufficiently small. The value of Ufc is not given in [6]
but from the physical consideration Ufc seems to be large than Uc. The results
of calculations of Vd for Jfc = 0, Uc = 0 ÷ 2 eV, Ufc =0 ÷ 8 eV are listed in
Table I (for 1 < n < 2) and Table II (for 2 < n < 3). The dependence of Vd on
Jfc is illustrated in Table III, where we have taken for U c and Ufc small values

(Uc= 1 eV and Ufc=2 eV) to guarantee superconductivity. In these tables the
values of Uf, E0 andVare equal to∞, -2.5 eV and 0.4 eV, respectively. For
all values used in Tables I, II III conditions (7-9) are satisfied. We note that in
Table III we have taken for Jfc a small value when Jfc > 0. For a large positive
value of Jfc conditions (7-9) may be not satisfied. For example Jfc = 0.1 eV (and
Uc = 1 eV,Ufc =2 eV,E0= -2.5 eV,V =0.4 eV) we haveET - ES1 <0.
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As it can be seen from Tables I and II, singlet d-like superconductivity is
still possible for small values of the interaction parameters, but the absolute value
of Vd is reduced by the interactions Uc and (Ifc. For large values of Uc and Ufc
(with Ufc > Uc) Vd is positive and this superconductivity is suppressed. From
Table III we see that this superconductivity is more favourable for Jf c > 0 than
for Jfc < 0. We remind that Jf c > 0 (< 0) corresponds to the ferromagnetic
(antiferromagnetic) f—c exchange. It can be seen if we express the term with Jfc
in expression (1) in the form:

We have also calculated V,i for the above values of the parameters. We obtain
> 0 and triplet superconductivity is absent.

5. Conclusions

We have investigated the weak-hopping Anderson lattice with generalized
electron interactions. In the absence of the interactions our results agree with the
results of Ref. [1]. We find that singlet d-like superconductivity is possible in some
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cases. The absolute value of Vd is reduced by the interactions U. and Uf c . The
large interactions Uc and Uf c (Uf c > Uc ) lead to positive values of Vd and suppress
superconductivity. Singlet d-like superconductivity is more favourable for Jfc > 0
than for Jf c < 0. Triplet superconductivity has not been found.
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