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Jellium metal surface properties such as the surface dipole barrier and work
function are obtained in the linear potential approximation to the effective
potential at the surface. The metal surface position and field strength are
determined respectively by the requirement of overall charge neutrality and
the constraint set on the electrostatic potential by the Budd—Vannimenus
theorem. The calculations are primarily analytic and these properties are
given in terms of universal functions of the field strength. The results ob-
tained employing the Ceperly—Alder expression for the correlation energy
closely approximate those of Lang and Kohn.

PACS numbers: 73.30.+y

1. Introduction

In this paper we present the results of a model potential calculation of jellium
metal [1] surface properties. The principal advantage of such model calculation [2,
3] is the elimination of the requirement of a numerical solution of Schrödinger equa-
tion for particles moving in a self consistently obtained effective potential which is
intrinsic to other more complex formalisms [4, 5]. Together with the application of
certain theoretical constraint, which help to define the model effective potential, it
is then possible to determine various properties of interest, such as a work function
and surface energies. Examples of typical constraints applicable to model metal
surface calculations are the requirement of self consistency of the surface dipole
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barrier [2], the condition on the electrostatic potential at the metal surface set
by the Budd—Vannimenus theorem [6] (BVT), and the Rayleigh—Ritz [7] energy
minimum criterion in addition to the charge neutrality condition [8]. The choice
and number of these constraints to be satisfied would, of course, depend upon the
complexity of the model potential empoyed.

We consider here the linear potential model [9, 10] approximation to the ef-
fective potential at a metal surface (Fig. 1). For a given value of the field strength,
the metal surface position is fixed by requiring overall charge neutrality. The field
strength may then be determined by application of the BVT. The choice of BVT
criterion as the constraint is governed by the fact that its application in the pre-
vious work [3] consistently lead to good results for the work function. In Sec. 2 we
give a discussion of the calculations and definitions of properties, and theorems
employed. Finally we compare our results obtained by employing Ceperly—Alder
approximation for correlation with those of self consistent calculations of Lang and
Kohn [5] and also with those of employing Wigner approximation for correlation
[11].

2. Calculation of metal surface dipole barrier and work function

In this model calculation the effective potential Veff(x) at a metal surface
(Fig. 1) is assumed to be:
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in the region x ≥ 0 the Schrödinger equation is the Airy differential equation
[12, 13]:

whose solution is

where Ai(ξ) is the Airy function, Ck - normalization factor, ξ = (x— E / F)(2F) 1 /3 ,
and E is the energy. The factor Ck and the phase shift δ(k) are determined by the
requirement of the continuity of the wave function and its logarithmic derivative
at the origin. Thus

and

where ξ0 = (k 2 /kF) (kFxF) 2 /3 , and Ai' (ξ) is the derivative of the Airy function ,

The fundamental quantities from which all other surface properties may be ob-
tained are the electronic and total charge densities defined as:

and

respectively. Implicit in the definition of the total charge density is the assumption
that the positive ions of the metal are smeared out and replaced by a uniform
charge background of density p+ = k3F/3π2 ending abruptly at the metal surface
position at x = α.

The surface dipole barrier contribution to the work function is given by the
expression:

The electrostatic potential Ves(x) required for the application of BVT is obtained
by solution of Poisson,s equation:

with the boundary conditions Ves(- ∞) = V'es(- ∞) = 0. Applying the charge
neutrality condition, the electrostatic potential may thus be written as:
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In this model the two variable parameters are the metal surface position
α and the field strength F. For a given F the metal surface position may be
determined either by charge neutrality condition:

or by application of the phase-shift rule of Sugiyama [15], according to which

The field strength, or equivalently, the slope parameter xF is adjusted so as to
satisfy the requirement set on the electrostatic potential by the BVT such that

where ε t , is the sum of the kinetic, exchange and correlation energies per partial
for a uniform electron gas.

With the transformation y = kFx and q= k/kF, such that the metal surface
position is now defined to be at ya = kFα, we have shown that the quantities ya ,
pe /k3F, Δφ/lF and Ves/kF are all universal functions of the slope parameter yF =
kFxF. Furthermore, all the spatial integrals in the expressions for the metal surface
position, the surface dipole barrier and the electrostatic potential can be done
analytically. Thus together with the electronic charge density, the determination
of these properties reduces to a simple numerical calculation of k-space integrals
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from 0 to 1. The explicit expressions employed in the present calculations are given
in the Appendix. Plots of the universal functions n(y) =pe/p, ya and Δφ/kF are
given in Figs. 2-4. The metal surface position and surface dipole barrier are then

easily determined for a specific metal (defined by its Fermi momentum kF = 1/αrs,
α -1 = (9π/4) 1 /3 ) by adjusting the slope parameter xF until it satisfies the BVT.

The work function of the metal φ is then given as

where μxc is the exchange and correlation part of the chemical potential of a
uniform electron gas defined as:

The exchange energy [15] per particle for the uniform electron gas is εx =
—0.458/rs.

For the correlation energy per particle valid at metallic densities we employ
the correlation function per particle of Wigner [16] and Ceperly-Alder [17, 18]:

and

where γ = —0.1423, 	
β1= 1.0529 and β2 = 0.3334.
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The results for the surface dipole barrier and work function within the linear
potential model employing these different correlations are presented in Sec. 3.

3. Results

In Table I we present the results for the surface dipole barrier and work
function for the two different correlation functions given by Wigner (W) and
Ceperly-Alder (CA). For rs = 2 5 both the BVT and charge neutrality are
exactly satisfied using Ceperly-Alder correlation formula, however for Wigner [12]
formula these conditions are satisfied for rs = 2 ÷ 4. Whereas for rs ≥ 5.5, using
CA formula, there is no choice of parameters in the linear potential model satisfy-
ing both these requirements. Thus for rs > 5.5 the present work satisfies the BVT
as closely as possible in the limit of this model, i.e. by a potential of infinite slope
and by the charge neutrality condition.

A comparison of Ceperly-Alder (CA) results with those of Lang and Kohn
(LK) indicate that the model reproduces the large dipole moments requried for
high-density metals, differing the value of Δφ by 0.08, 0.03, 0.01 and 0.003 eV
for rs = 2.0, 2.5, 3.0 and 3.5, respectively. The reason for the agreement of these
results is due to adjusting ΔV so as to satisfy the BVT, one has already cbtained
approximately 40% of the dipole barrier. The remaining contribution to Δφ from
charge outside the metal is , determined accurately since the model permits a large
electronic spillover. In addition, satisfaction of the BVT also leads to very accurate
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electronic densities in this range. For r.s = 4.0, 4.5, and 5.0 the model becomes
progressively more reflecting as the potential rises more steeply leading to under-
estimates for the dipole barrier. Also ΔV in this range comprises only about 22%
of LK value. For r.s ≥5.5, for which the contribution of the dipole barrier to the
work function is small, the results for Δφ are within 0.22 eV of those obtained
by LK. In this range, the LK results also do not satisfy the BVT, although their
results more closely satisfy this condition than do the results of the infinite barrier
model [2]. Thus, over the entire metallic range the results of this model calculation
for the dipole barrier and work function are within 0.32 eV of those due to LK.
The use of the CA correlation function leads to results for surface dipole barrier

φ9 and work function φ which are more closely approximate to those of LK than
the ones obtained employing the W function.

4. Conclusion

We obtain jellium metal surface properties such as the surface dipole barrier
and work function in the linear potential approximation to the effective poten-
tial at the surface. We determine the metal surface position and field strength
respectively by the requirement of overall charge neutrality and the constraint set
on the electrostatic potential by the BV theorem. The calculations are primar-
ily analytic and these properties, are given in terms of universal functions of the
field strength. The results obtained employing the Ceperly-Alder expression for
correlation energy closely approximate those of Lang and Kohn.

We observe, in conclusion, that the linear potential model together with the
constraint of the sum ule due to Budd and Vannimenus leads to results for all sur-
face properties comparable to those obtained by Lang and Kohn for jellium metal.
The fact that the effective potential does not become constant but increases in-
definitely is unimportant, since the effective potential is in substantial error only
in the region far from the metal surface where the electron density has exponen-
tially decayed to a small fraction of its value at the surface. The majority of the
calculations, as shown in the Appendix, is primarily analytic, and the universal
curves permit a direct determination of surface properties on application of any
theoretical constraint.
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Appendix

With the transformation y = kFx, k/kF = q, the slope parameter is yF =
kFxF, the metal surface is at yF = kFzF, and the variable ξ is

We present below expression for the phase shift, electronic density, metal surface
position, surface dipole barrier, and the electrostatic potential in terms of the
universal function of the slope parameter yF.

Phase shift

With the definition

such that

we have

Electronic density

The universal functions for the remaining properties were obtained using the fol-
lowing integral expressions:
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Metal surface position

Application of the charge neutrality condition of Eq. (12) leads to the ex-
pression:

An alternate expression is obtained from the Sugiyama phase-shift rule of Eq. (13):

Surface dipole barrier

where

and

Electrostatic potential
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