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We present a simple magnetic model for PrAl3. The effects of crystal field are
treated using a reduced set of levels and the corresponding wave functions
are extracted from the actual crystal field 1evels of Pr+ 3 in a hexagonal sym-
metry. The exchange between 4f- and conduction-electrons are dealt within
a molecular field approximation. An analytical magnetic state equation is
derived and the magnetic behaviour discussed. The parameters of the model
are estimated from a fitting of the inverse susceptibility of PrAl3 given in
the literature.

PACS numbers: 75.10.Dg, 75.30.Cr

1. Introduction

The starting point to understand basic magnetic quantities of rare-earth
intermetallics consists in considering on equal foot the splitting of the 4f-levels of
the rare-earth ions due to the crystal field and the exchange interaction between
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the 4f- and the conduction-electrons. Usually the crystal field Hamiltonian and
level scheme are presented within the Lea-Leask—Wolf notation [1] and the effects
of conduction electrons in an effective exchange interaction coupling the spins of
the rare-earth ion [2].

In this paper we study the magnetic properties of PrAl3 from a model in
which the crystal field description is considerably simplified and the role of the
conduction electrons, which produce an effective exchange magnetic field at the
4f-electrons of Pr+ 3 , is made explicit.

The stucture of the paper is as follows. In Section 2 the model Hamiltonian
and the magnetic quantities are presented, in Section 3 the magnetic state equation
for the ionic and electronic magnetization are derived and an explicit expression for
the ionic susceptibility is obtained in Section 4. Finally, in Section 5 an application
of the results of the model to PrAl3 is discussed and the parameters of the model
are estimated using the experimental temperature dependence of the susceptibility
of PrAl3 [3].

2. Model Hamiltonian and magnetic quantities

In the molecular field approximation the model Hamiltonian is

where

liCF describes the crystal field effects and it is discussed elsewhere. &h i is related
to the dynamics of the conduction electrons; from it one can derive the electronic
energy density of states which is of interest to the magnetism of the conduction
band. In this paper we adopt a rectangular shape for the density of states.

where
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In Eqs. (3) and (4) μB is the Bohr magneton, h0 is an applied magnetic field,
g is the Landé factor and Jz and sz are the z components of the total angular
momentum of 4f-electrons and the conduction-electron spin respectively.

Expressions Hiexch and Heexch in Eqs. (3a) and (3b) come from the molecular
field approximation of the actual exchange interaction:

The parameter J0 in Eq. (4) is

In this paper the HCF will be constructed taking into account only the two
lowest levels of Pr+3 in a hexagonal symmetry [2] (Fig. 1 shows the three first
levels of the complete level scheme [3]). In the case of Pr+ 3 in PrAl3, according

to Mader et al. [3], these two levels are singlets separated by an energy gap ∆ =
3.41 meV. The eigenfunctions of these levels are:

Within the basis defined by (7)
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and

where

In what follows α0 is treated as a free parameter (g is an effective Landé factor).
Our main quantities of interest are the electronic and ionic magnetizations

2(sz) and (gJz) (in units of μB). In the next section magnetic state equations
relating these quantities to the model parameters, the external magnetic field and
temperature are derived.

3. Magnetic state equations

The ionic magnetization is given by

where Elj are the eigenvalues of (2a), given in Appendix A and β=1/KBT=
The electronic magnetization is obtained from

In Eq. (12) n(ε ) is the electronic density of states, μ — the chemical potential,
N — the number of states in the band and z — the fraction of occupied states in
the band. In what follows we take a rectangular shape for n(ε ):

Equations (4), (11) and (12) define the magnetic state equations. In the next
section we derive an explicit equation for the ionic magnetization and magnetic
susceptibility.

4. Ionic magnetic state equation

For n(ε ) given by (13), Eq. (12) can be simplified (see Appendix B). For the
range of temperature and band width ε0 of interest, we have:
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where εF = zε0.
Combining (11) with (A2) and (A3), one obtains

From (15), (14) and (4a) we also derive the reduced inverse ionic magnetic sus-
ceptibility:

The limit at T = 0 K of Eq. (15) is:

From (17) one obtains, using (4a) and (14), in the limit (gJz)0 = 0, the onset
condition for spontaneous magnetic order:

Equation (18) defines the boundary between the ferro and paramagnetic regions
in the space of parameters J0/2εF versus ∆/2εF.

Equation (18) is the starting point to study the magnetic behaviour in the
para- and ferromagnetic regions. Figures 2 and 3 illustrate exchange enhancement
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and crystal field effects in the para- and ferromagnetic phases respectively. Figure 4
shows the reduced inverse ionic susceptibility given by Eq. (16) versus kBT/εF for
different values of

∆/εF, J0/εF  andα0.

Application to PrAl 3

The magnetic susceptibility of PrAl3 was experimentally studied by Mader
et al. [3]. Figure 5 shows the inverse susceptibility versus temperature, obtained
using Eq. (16) together with the experimental points of Mader et al. [3]. The fitting
is for εF = 8.2 eV, ∆ = 3.41 meV, J0 = 6.82 meV and α0 = L95. The value of ∆ is
that of Mader et al. [3] and the εF is taken from Jarlborg et al. [4], who computed
the band stucture of LaAl2, CeAl2 and YAl2.

Finally, it is interesting to note that in the space parameters J0/2

ε

0 versus
Δ/2ε0, the point defined by the above values of J0,Δ,εF,andα0falls in the
paramagnetic phase (see Eq. (18) and its interpretation).

Appendix A. Eigenvalues of ionic Hamiltonian (Eq. (2.a))

In order to compute μ B (gJz), we need —∂Ej/∂hi (see Eq. (11)). The values
Ej(j = 0, 1) are calculated from

where

Appendix B. Electronic magnetic state equation for a rectangular
energy density of states

Putting (13) into (12) we can solve for (sz), giving
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For low temperatures βε0 >> 1 and z around 0.5 and Eq. (B1) reduces to

where
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