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The superfluid 3He is considered in confined geometry for arbitrary thickness
when surface roughness is taken into account. The equilibrium states, the
critical size when the two-dimensional state is realized exclusively, and the
critical thickness below which superfluidity is destroyed are defined, found
and discussed with reference to the essential parameters of a system. Some
particular cases are examined analytically. The examples of exact numerical
solutions are presented.

PACS numbers: 67.50.-b, 67.50.Fi

1. Introduction

The progress in experimental research of superfluid He 3 in confined geom-
etry disposes us to give some theoretical explanations and predictions. Although
recently much attention has been paid to this problem [1-9] the presented results
have been obtained under Some restrictions imposed on thickness of a system and
concerning the equilibrium state symmetry (pure planar state) [1-4] or on wall
boundary conditions (specular reflecting surface) [5-8]. In the present paper we
generalize the problem and take into account the surface irregularities. Addition-
ally we treat the thickness of the flat system as a continuous external parameter,
which manifests in dependence of the equilibrium state on the system size [8].
Nevertheless we still omit the quantum interference effects, since for the system
thickness much longer than the interparticle separation (i.e. the Fermi wavelength
1/PF) they can be easily averaged out [5].
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2. Formalism

We apply the self-consistent Green function formalism in the framework of
weak-coupling approximation where the flat geometry of the system is induced
in accordance with Ref. [1]. We consider the slab geometry with one diffusely
reflecting surface and a facing specular surface parallel to xy-plane and located at
L distance. The separation length L can vary from the distance d such that 1/pF
< d < ξ0, where pF = (3π-2 p) 1 / 3 is the Fermi momentum of a bulk system, p 

—density of a bulk system and ξ0 ~ 40 nm is the superfluid coherence length at
zero temperature (i.e. the de Broglie length of the Cooper pair), to infinity which
corresponds to a standard bulk system. The geometry of the problem causes that
the perpendicular momentum component pz is quantized, i.e. pz = pFn/ N0 where
n = 0, 1,... , N -1, N0 = pFL/πandN = [N0]+1 (here [N0] denotes the nearest
integer 1ess than N0). Note that in analogy to Refs. [4, 5] we can write N0 =
N — β(0 <β< 1) and since theβparameter expresses local fluctuations of the
distance L, all macroscopic magnitudes should be averaged over β. This statement
stays in opposition to results achieved in Ref. [2] where the discrete spectum of
single-quasiparticle excitations led to effects resembling the de Haas-van Alphen
effect. We claim that because of the local fluctuation we are not able to control
the thickness of the system as a whole, hence merely microscopic magnitudes
oscillate locally together with fluctuation of L, which cannot determine the realistic
physical results [4-6]. Moreover in Ref. [6] it was proved that the averaging over β
parameter modifles the physical results for very thin films only (i.e. if L separation
length is comparable with interparticle distance L ~/pF), and therefore this
effect can be neglected for the considered thickness scale.

For the diffusely scattering boundary surface we employ a versatile "Ran-
domly Rippled Wall" model and a one-parameter (Gaussian) model of the surface
bump distribution proposed by Chaplik and Entin [10] and adopted by Te šanovi ć
and Valls [1]. Such model constitutes the Simplifled problem of Dirac,s delta type,
where only the average height of surface irregularities is included. The extended
two parameter model with surface bump height and width can be introduced in
accordance with Ref. [11]. Some results reached for such approximation can be
found in Ref. [3], where it was pointed out that all gap components are suppressed
and more so as bump height increases relative to width. Since this effect seems to
be small, however, we restrict ourselves to the one-parameter model.

In order to consider the specified problem we use the Matsubara-Green func-
tion formalism exact for systems with confined geometry and porous substrate
surface roughness. Since such formalism was thoroughly elaborated in [1] and sup-
plemented in [2] we do not report it here in detail, specifying only modifications
which appear in relation to standard three-dimensional Green function formalism.
Namely, due to the confined slab geometry the -angle integration is replaced by
appropriate summation over n. Thus, the averaging over the Fermi surface reduces
to the form [6]:
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On the other hand inclusion of the surface roughness causes that the Mat-
subara frequency ωk is modified by the normal part of the self-energy ∑n (iωk),
and therefore in all basic equations considered below the renormalized form of the
frequency ωk(n) = i∑n(iωk) should be used.

Moreover, in contradiction to the papers [1, 2] we admit more general form
of the unitary energy gap. It causes that the equilibrium state is determined by
such faction as the system size and the surface roughness.

Finally, in order to complete the review of the applied formalism we give some
remarks concerning the assumed accuracy. We neglect the effects connected with
the integration over the Fermi surface neighbourhood (particle-hole asymmetry)
[6]. The chemical potential μ is found self-consistently [1]. We assume additionally
that the Cooper pair creates the coherent state oriented in xy-plane (for details
see below). Note that although the porous substrate is certainly causing some
disorder in the system, this effect, however, can be neglected because it affects
the equilibrium state in a very thin film only (in comparison with the considered
system size). Such treatment of the problem is fully justified since the omitted
effects are of the same order as others standardly ignored, as e.g. strong coupling
effects.

Let us now formulate the basic assumptions and equations which allow to
solve the specified problem.

2.1. The order parameter

For the assumed symmetry conditions we can neglect the non-unitary states
and hence the order parameter can be taken in the following form:

where

is oriented in xy-plane [12]. For such defined states the ε parameter varies from
ε = —1/2 (the pure bulk planar state) to ε = 1 (the pure bulk polar state). For
ε = 0 we deal with isotropic BW state. Note that the established parameterization
allows us to consider all possible unitary p-wave states simultaneously, using sole
parameter ε. The only exception constitutes the ABM (axial) state for which:

Nevertheless, since in the framework of weak-coupling approximation the ABM
and planar states are degenerated, and their free energies are equal to each other,
we can study the planar state instead.

For the state given by Eq. (3) we can write:
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which can be also rewritten in the following equivalent form:

and hence (cf. [3-5]):

are the planar and polar (perpendicular) gap components which vanish for ε = 1
and ε = -1/2, respectively. Note that for ε = —1/2 the form of Eq. (5) is identical
as for ABM state.

2.2. The inclusion of the surface roughness

The effects of surface roughness on the properties of superfluid 3He in con-
fined geometry are overwhelmingly determined by the pair-breaking nature of ran-
dom scattering. However, it is assumed that particles experience random impurity
scattering only in vicinity of the boundary surface, i.e. within a layer compara-
tively thin with respect to considered distance L. Therefore these effects can be
considered by means of standard perturbation expansion method, and their inten-
sity strongly depend on the system size. Since the more thorough elucidation of
the problem is given in Ref. [1], here we discuss only some features of the regarded
effects.

The influence of the substrate roughness on the superfluid 3He system within
the framework of the considered approach is stated by means of the following
parameter [1, 10]:

which modifies the self-energy (and subsequently the Matsubara frequency) in the
self-consistent manner (see below).

The assumed accuracy allows us to transform Eq. (8) to the form:

where y = w2p4F parameter is the dimensionless measure of the surface roughness
and I = pFL/π is the dimensionless distance. Rewriting F0 parameter in more
convenient form we arrive at:

From the experimental data on superfluid 3He [13] we have: Tcbulk = 0.8 mK,
TF=1.64 K atp =0 bar and Tcbulk = 2.6 mK,TF =1.02 K atp =34 bar (melting
pressure), and finally for α we obtain following inequality: 2.939 ≥ α ≥ 0.562, that
is to say α ~1. Renormalizing theyparameter we can replace it by y=αy.
Moreover, we state that the pressure weakens the roughness effects.
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3. The basic equations

Since the presented problem constitutes the extension of the considerations
contained in Refs. [1, 2] we omit all formal derivations inserted there and present
the basic equations suitable for this problem, only.

3.1. The gap equation

In order to determine the state realized in the system with flat geometry and
surface roughness we have to solve the gap equation. In the most general case for
the p-pairing the gap equation attains the following vectorial form:

where dj = dkj pk, f = N(0)g1, is dimensionless pairing interaction constant and
the kernel P(ε) will be defined and discussed in detail in the next subsection.

Since in the considered problem the order parameter (2) is assumed to be
a function of only two independent parameters

ε

 and ∆, by virtue of Eq. (3) the
gap equation (11) resolves itself to the system of two linearly independent scalar
forms (cf. [5] and Appendix A):

Note that the above equations correspond to the bulk pure planar (axial) and pure
polar state gap equations, respectively. In our case, however, for an arbitrary ε the
suitable state is realized provided that both equations are satisfied coincidently
(cf. [6, 7]).

In order to employ the above equations for the specified problem we can
rewrite Eqs. (12) and (13) in the form of the following set of equations:

and solving them we obtain

The former equation enables us to determine the equilibrium state for flat geometry
(i.e. to determine the ε parameter). Note that for the bulk system ε = 0. Instead,
the 1atest equation allows us to find the energy gap amplitude for the equilibrium
state. In this manner we have recovered two independent scalar equations adequate
for the description of the problem.
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On the other hand multiplying Eq. (12) by 2(1 - ε)/3 and adding it to
Eq. (13) multiplied by (1 + 2

ε

/3 we get an extra equation:

which defines the relation between ε and Δ(ε) for arbitrary states. We emphasize
that the macroscopic forms of the above equations are reached after averaging
over the β parameter (cf. Appendix A). Then, Eqs. (16) and (17) reduce to the
forms

Note that the set of Eqs. (19)-(20) can be reduced to Eq. (21) for all ε. Thus, if

ε

= -1/2 (l = lc1, see below), joint Eqs. (19) and (20) are equivalent to Eq. (21)
and for l<lc1(

ε

 = -1/2) we can consider only the latest equation.

3.2. The kernel P(ε)

Since the kernel P(ε) derived in the framework of Green function approach
possesses a few equivalent representations, we discuss it in detail.

The most general form of P(ε) taking into account the substrate roughness
is as follows:

is a function of (ω/∆ ), (T0/∆) and ε; kD = [(ωD + πT)/2πT], where ωD denotes
the cut-off frequency, for which ∆ << ωD << μ. Note that the kD parameter is a
function of temperature, it tends to infinity if T tends to zero. It causes that the
above representation becomes inconvenient for very low temperatures (T « Tc ).
Nevertheless neglecting the surface roughness (i.e. for Ґ0 = 0 and wk = ωk) the
P(ε) kernel can be rewritten in the form for which the frequency ωk-summation
was performed (cf. e.g. [6, 7] and Eq. (B.1)):
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where E(ε) = (ξ2+∆(ε) W|d|│2)1/2 . At that time in the zerotemperature limit the
kernel P(ε) reduces to the following form:

The detailed consideration of the problem with both specularly reflecting walls,
using the latter representation is given in Ref. [6].

4. Solutions

The self-consistent solution of Eqs. (16)-(17) together with self-energy renor-
malization given by Eq. (23) allows us for determination of the ε parameter in func-
tion of the system size L, temperature T, pairing constant f and surface roughness

Ґ0:

Further, assuming ε = -1/2 we can derive the critical size Lc1 , defined as the
maximal system size for which the planar state is realized exclusively. Thus, we
have:

Moreover, employing Eq. (18), by analogy to Ref. [1], we can also derive the critical
thickness La, below which superfluidity is destroyed (i.e. ∆ = 0), for arbitrary
state, i.e.

It is obvious that the above results (26)-(28) for arbitrary parameters T, f and
Ґ0can be in general found only numerically and some numerical results will be

presented in the next section. However, now we examine limited cases for which
analytical solution is possible.

4.1. The influence of the surface roughness on the transition temperature T c

Applying the relations given in Appendix A and assuming that Ґ0 is small
(Γ0 < Tc0) from Eq. (18) we can estimate the transition temperature Tc and we
get (cf. Appendix B):

where (cf. [9])
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Hence for large L we have a = b = K = 1 and making use of Eq. (10) we obtain:

where the ε parameter should be properly fitted for fixed 1 and y.

4.2. The critical thickness Lc2

In order to derive the critical thickness Lc2 below which superfluidity is
destroyed we employ Eq. (18). Then in the limit Tc →0 and for small∆we obtain
(cf. [1]):

where C = 0.5772 is the Euler constant, exp (-2(1 -2/3
ε

)). Note that (ε =
-1/2) = 0.0695 ≤  ≤ 0.1353 = ε = 0). Applying further Eq. (10) with the
above accuracy we have:

where

Assuming that ξ0= υF/π∆0 (the standard BCS coherence length) we can write:

and hence (∆ = 0, K = 1)

is an increasing function of ε which for ε = —1/2 is of the same order as in Ref. [1].

4.3. The critical size Lc1.

The presented theory permits us to define the equilibrium state which is
realized in superfluid 3He with confined slab geometry. Since the equilibrium state
tends to the planar one when the system size (thickness) lessens, we can also define
the critical size Lc1 below which the pure planar state (ε = —1/2) is realized
exclusively [4-7]. The solution of this problem for the case Ґ0 = 0 was considered
in detail in Ref. [6]. Now, we consider it in two particular cases.
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4.3.1. T = 0 limit

Restricting ourselves to the case of T = 0, small y and large l, Eq. (19)
reduces to the form:

where

From the above for

 ε

 = -1/2 we obtain:

The imposed restrictions induce the equivalent conditions as discussed in the pre-
vious section of this paper. Therefore the obtained critical magnitudes can be
compared. Employing Eq. (33) we get:

Note that the critical size is larger than the critical thickness, Lc1 > Lc2(
 ε

), for
arbitrary ε. It proves that lessening system size always at first the planar 2D-state
is achieved and next, provided that y > 0, superfluidity is destroyed. Consequently
in previous subsection we can put

 ε

 = —1/2 in all obtained results.

4.3.2. T ≈ Tc lmit
If we assume that T → Tc and y is small, for large 1 Eq. (19) reduces to the

form:

Thus,

defines the equilibrium state of superfluid  3He in flat geometry, and for ε = -1/2
we obtain the critical size in the form:

and hence Lc1 (y) > Lc1(0).
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The obtained results (37) and (41) display that the surface roughness effects
enlarge the critical size L c1. On the other hand the y parameter can be treated as
a factor which renormalizes the pairing interaction parameter f giving rise to its
reduction. Since the parameters f-1 and α are decreasing functions of the pressure,
Lc1(y) also lessens together with pressure enhancement for the fixed roughness y.

5. Numerical results
The results obtained in the previous section allow us to recognize the be-

haviour and general properties of superfluid 3He in confined slab geometry. We can
also roughly estimate the obtained results. Assuming that pF~108cm-1and 3≤
f ≤ 5 (f-1 = log(2ωD/∆0)) we get Lc1(0) ~ 10 -6 cm, so Lc2(0) ≤ L c1(0) ~ ξ0,
which is approximated in Refs. [1, 5]. We can observe that the influence of rough
(diffusely scattering) substratum exhibits in considerable enhancement of critical
parameters.
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In order to solve Eqs. (19)-(21) generally we have to employ numerical tech-
niques. In numerical analysis of the problem it is convenient to introduce dimen-
sionless variables:

the reduced (dimensionless) temperature and effective roughness parameter, re-
spectively. The Tc temperature is self-consistently determined for appropriate sys-
tem thickness L and surface roughness v. The v parameter varies from v = 0
for a specularly reflecting surface to v ~ 10 corresponding to a strongly diffusely
scattering boundary. Note also that the size of the system L can be also mea-
sured in dimensionless units related to zerotemperature coherence length ξ0 or
equivalently Lc1(0, 0) critical size (see above).

The equilibrium states defined univocally by ε parameter are presented in
Fig. 1 in function of reduced inverse size of the system, reduced temperature and
effective roughness. Fig. 1a corresponds to specularly reflecting boundary, while
Figs. 1b-ld to diffusely reflecting wall. For infinite (three-dimensional) system for
arbitrary temperature t and surface roughness v, as we expected, we have sole
equilibrium state with ε = 0, i.e. the BW-isotropic state. Note also that for v = 0
(see Fig. 1a) all plots have convex curvature, in contrast to v ≠ 0 case, where
the appropriate dependence of ε on system inverse size 1/L exhibits the concave
curvature. On the other hand it can be easily noticed that the rough boundaries
cause that the equilibrium state is more sensitive to temperature changes (espe-
cially close to zero temperature, see Fig. 1). Therefore we claim that the inclusion
of roughness of the boundary surface cannot be reduced to simple renormalization
of abscissa, i.e. introduction of linearly renormalized length-scale.

The critical Size Lc1, for which the pure twodimensionless (planar, for which
ε = —1/2) state is realized exclusively, is plotted in Fig. 2, in function of reduced
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temperature and effective surface roughness v. Note that the ordinates correspond-
ing to reduced inverse critical size Lc1(0, 0)/Lc1(t, v) are plotted in logarithmic
scale. Let us emphasize that for the surface roughness parameter v ~ 1 (v~ 10)
the Lc1 is approximately enhanced by one (two) order in magnitude with respect
to specularly reflecting case. Note that as t → 1 (i.e. T → Tc the critical size Lc1
tends to infinity.

The energy gap amplitudes for the equilibrium states are presented in Figs. 3
and 4, in function of reduced inverse system size, reduced temperature and effective
surface roughness. In Fig. 3 and Fig. 4 the transversal (polar) ∆1 and longitudinal
(planar) ∆2 components of gap energy are plotted, respectively. From Fig. 3, for
arbitrary v substrate roughness parameter, it can be seen that while reducing the
system size L, ,∆1(t,v) diminishes and finally vanishes at critical size Lc1(t, v).
The above is in contrast to the planar ∆2(t, v) gap amplitude behaviour, which
slightly increases while the system size lessens from infinity to the Lc1 thickness.
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Since at Lc1 critical size the pure two-dimensional state is realized exclusively,
further reduction of the size L alters only the planar ∆2 gap amplitude, what is
depicted in Fig. 4 (the dashed lines). For specularly reflecting boundary the planar
state remains unchanged and exists for arbitrary thickness L ≤ Lc1(t, v), including
pure two-dimensional system (L = 0), cf. Fig. 4a. For the case v ≠ 0 (i.e. diffusely
reflecting walls) ∆2 amplitude diminishes while the system size lessens L ≤ Lc1,
and finally vanishes for certain system thickness Lc2, i.e. the pure planar state
exists exclusively for Lc2 ≤ L ≤Lc1(cf. Figs. 4b-4d).

Finally in Fig. 5 and Fig. 6 we present temperature and v-parameter depen-
dence of Lc2 critical thickness (below which the superfluidity is destroyed). Note
that in Fig. 5 the ordinates L c1(0, 0)/Lc2(t, v) are plotted in logarithmic scale.
From Fig. 6, where we present the Lc2 dependence on v roughness parameter for
chosen temperatures t, we see that the dependence of Lc2 on v for non-zero
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temperatures is almost linear, similarly as for the zero temperature case (cf. pre-
diction given by Eq. (35)).

6. Conclusions

The presented formalism allows us to make a thorough study of the be-
haviour of superfluid 3He in confined geometry when the thickness of the system
lessens from infinity (the bulk system) to a size of order of the zerotemperature
coherence length (the thin film-like system). According to the obtained results the
equilibrium state, parameterized by transversal (perpendicular to the boundary
surface) and longitudinal (parallel) gap amplitudes, becomes anisotropic and is al-
tered in a continuous manner finally achieving the twodimensional stucture (i.e.
the transversal gap vanishes) at the critical size Lc1. Further, provided that the
surface roughness is included the amplitude of the planar (longitudinal) energy
gap is rapidly reduced and at the critical thickness Lc2 superfluidity is destroyed.
These both critical parameters increase if effects connected with surface rough-
ness become more intensive. Moreover, the same effects modify equilibrium state.
Simplifying the problem one can say that these effects lead to the renormalization
of the pairing interaction parameter f causing its diminution. Since the influence
of the confined geometry becomes more extensive if the coupling parameter is
small, the rough substratum intensifies properties of superfluid 3He involved by
the confined slab geometry.

Concluding we emphasize that the presented results are high-rigour for suffi-
ciently large thickness L, thereby the surface roughness makes them more precise.
Moreover, if the system size satisfies condition Lc2 ≤ L ≤ Lc1,  the equilibrium
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state is twodimensional and can be identified with the ABM (axial) state similarly
as in Refs. [1, 2].
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Appendix A

In order to simplify the forms of the presented results we introduce the
following symbols:

which is the discrete variable if L < oo.
Moreover, we apply the following formulas (cf. Eq. (1)):

where

The above formulae after the macroscopic averaging over β for large N (or equiv-
alently 1) reduce to the form:

where we consistently replaced N by 1 (cf. [6]). Moreover, for large N (or l) and
j > 0 we can write (cf. [14]):

and hence averaging over β (Eq. (A.4)) and with the assumed accuracy we get
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Thus, we can formulate the following relation (valid for arbitrary j):

which allows us to simplify our calculations. Note that in the presented approach
we consistently neglect all terms of the order l -2 and higher.

Appendix B

In order to obtain the presented results we employ the following relations:

and

for sufficiently large kD.
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