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Modulational instability of a plane wave of the nonlinear Schrödinger equa-
tion is discussed numerically on the basis of the pseudo-spectral method.
The linear theory is verified and influence of the attenuation is considered.
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1. Introduction

One-dimensional propagation of nonlinear waves has been extensively stud-
ied both experimentally and theoretically in many branches of physics. Especially,
the nonlinear Schrödinger equation (NS, henceforth) has attracted much attention
[1]. This equation describes wave propagation in weakly nonlinear and strongly dis-
persive media and is valid for small amplitude waves. A generalization of the the-
ory for arbitrary amplitude waves leads to the exponential nonlinear Schrödinger
equation (ENS, hereafter)

where the indices x and t denote partial derivatives, α, β , and ε are the dispersive,
nonlinear, and attenuation coefficients, respectively. In the case of ε ≠0, Eq. (1)
may describe propagation of nonlinear pulses in optical fibers with an attenuation
[2] or Langmuir plasma waves with linear Landau damping [3]. This equation has
been introduced recently to nonlinear plasma physics by D,Evelyn and Morales
[4], Kaw et al. [5], Sheerin and Ong [6] and to nonlinear optics by Murawski and
Koper [7].

In this paper we consider modulational stability of the ENS equation. It
relies on a process in which perturbations from a plane wave grow as a result
of an interaction between Fourier modes and can be interpreted in terms of a
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four-wave-mixing process [8]. A good physical interpretation has been presented
as well by McKinstrie and Luther [9].

The modulational stability has been studied in many areas of physics [8-11].
In particular, the modulational stability of the modified nonlinear Schrödinger
equation has been discussed by Parkes [10]. The modulational instability of a
continuous wave (cw) optical signal in a glass fiber combined with an externally
modulated amplitude modulation can be used to create a train of optical solitons
[12, 13] with a high repetition rate. It exeeds 0.3 THz and is tunable, whereas
the highest repetition rate, obtained from direct modulation of light electronically,
is about 20 GHz [12]. Due to high cost of constuction of the soliton laser [14]
by which quite substantial power is needed to produce a soliton [15] this way of
creation of the solitons is very important. Additionally, cross-phase modulation
stability in birefringent optical fibers has been discussed e.g. by Agrawal [16] and
Menyuk [17] to show that the presence of the second wave enhances the instabil-
ity region. See McKinstrie and Bingham [11] as well for a similar discussion. The
nonlinear behaviour of the modulational instability of nearly constant amplitude
derivative nonlinear Schrödinger waves has been discussed by Fla [18] to show a
recurrent behaviour. A review is given by McKinstrie and Łuther [9] of the modu-
lational instability of the NS and coupled NS waves. The amplitude ripples (which
grow along the fiber) that are created on the higher-order soliton (N > 58) can
be regarded as modulational instability [19] of the NS equation. The third-order
dispersion, the self-induced Raman effect and derivative term (suitable for long
fibers) are considered to enhance the modulation instability region [19]. This pro-
cess, however, is more related with the stability of stationary wave solutions and
the solitons has been used instead of a cw wave to suppress the induced Brillouin
scattering (see e.g. [20]).

In the past, the studies of modulational stability usually concerned small
amplitude perturbations (although see Goldstein and Rozmus [21]) which allowed
a linear dispersion relation to be derived and hence regions- of stability to be
determined. In a case of arbitrary amplitudes the linear theory fails and we must
take into consideration nonlinear terms for the perturbations. One of the possible
approaches will be presented in the third section of the paper. Numerical results
and conclusions will be shown in the final section.

2. Linear theory

Equation (1) with ε = 0 possesses a plane wave solution [7]

where u 0 is an arbitrary constant and

Superimposing small amplitude disturbances upon the state u0,
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we fmd that an oscillatory instability exists for αβ > 0 and

Otherwise we have got stabilities.

3. Nonlinear theory

To test the modulational instability by a nonlinear way, Eq. (1) is solved
numerically with the initial condition,

using the original code adapting the pseudospectral method (e.g. [22]). By that
purpose Eq. (1) is discretized as follows

where F is the Fourier transform operator, m and n denote the Fourier mode and
time t = n∆t, respectively.

It is useful to mention here that various pseudospectral methods have been
reviewed by Nouri and Sloan [23]. In the uns reported the total number of Fourier
modes was 64 and the lenght of the simulation region equals to one or two periods
of the perturbation wave. Numerically obtained results have been verified by dou-
bling the number of Fourier modes and halving the time step until no significant
changes appeared.

4. Numerical results and conclusions

In this section it is our intention to study numerically the nonlinear behavior
of modulated ENS waves. All numerical results will be presented for α = ±1/2
and β = 1. To verify the linear theory (see formula (5)) we will un cases both for
linearly stable and unstable perturbances.

4.1. Positive dispersion

Figures 1a and 1b show the development of modulated waves with an am-
plitude u0 = 0.1. For Ad = 0.08 and k = kc/2, creation of humps, who may be
interpreted as dressed bright solitary waves, is observed (Fig. 1a). (For the NS
equation such solitary waves have been noticed by Hasegawa [13].) One obtains
a series of modulation and demodulation cycles known as recurrence phenomena.
Unstable periodic modulations grew to maximum at time t ≈ 80 and then subsided
until the wave train actually becomes nearly uniform again at t ≈ 160. Thus, a
recurrent time is approximately 160. Qualitatively different behaviour is presented
in Fig. 1b. For Ad = 0.08 and k = 3k/2 waves are found to be linearly stable.
Indeed, during a time t = 100 no sign of instability has been noticed but a phase
change only.
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Figures 2a and 2b demonstrate how the modulational instability develop for
waves with unit amplitude. These cases both show a recurrent behaviour with the
periodic modulations growing, reaching a maximum and then decreasing to a more
or less demodulated state after a finite time. For Ad = 0.1 and k = kc/2, more
complex recurrent behaviour has been observed (Fig. 2a). Namely, the solitary
wave state at t = 10 is almost recovered at t = 30. Similar behaviour happens for
states at t = 20 and 40. The recurrence time is about 20. Finally at ≈50 the
wavetrain becomes uniform again (Fig. 2a). For larger amplitude of disturbances
the recurrence time is smaller, e.g. for Ad = 0.8 it is about 10 (Fig. 2b).

In Figure 3 we have tested the influence of an attenuation and long wave-
length perturbations on the cw waves. In all cases no signs of recurrent behaviour



Modulational Instability ...	 499

have been observed. Even a small attenuation, = 0.0518, caused the recurrence
to be completely degraded (Fig. 3). Although the solitary waves are created at
t = 5, the wavetrain finally subsided.

In conclusion, the linear theory of the modulational stability of the cw waves
has a very limited range of validity. It gives relatively correct results for small
amplitude waves and short times only.

4.2. Negative dispersion

Figures 4a and 4b show some examples of how the wave modulations evolve
for the negative value of dispersive coefficient α = -1/2 and β = 1. To our
knowledge it has not been done for any other equation. For u0 = 0.1, Ad = 0.08,
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and k = kc/2 deep modulation develop at t = 160 creating dark solitary wave (Fig.
4a). (Here, kc is calculated from the formula (5) taken with a positive right hand
side) Despite linearly stable waves we observe nonlinear instability. No recurrence
phenomena have been noticed until time t = 400. Instead, two dark solitary waves 
move with different velocities to attract each other in a final stage at ≈360.
Similar behaviour happens for u0 = 1, Ad = 0.8, and k = kc/4 (Fig. 4b). The
only difference is that for larger amplitude modulations the dark solitary waves
are created faster.

In conclusion, although the linear theory predicts modulational stability of
wavesin a case of negative value of dispersive coefficient α, oppositely the nonlinear
theory finds that after some time modulated wavetrains develop into the dark
solitary waves state. This time is larger for smaller amplitudes perturbations.

It is well known that the NS equation possesses the dark solitary waves
solutions (see e.g. [24]). But to our knowledge, the dark solitary waves have not
been reported yet for the ENS equation. We have thus proven their existence.

The author expresses his cordial thanks to Dr John E. Parkes and unknown
referees for their valuable suggestions.
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