Proceedings of the XX International School of Semiconducting Compounds, Jaszowiec 1991

MAGNETIZATION AND SUSCEPTIBILITY OF $Sn_{1-x}Gd_xTe^*$

M. GÓRSKA^a, J.R. ANDERSON^b, S.M. GREEN^b AND Z. GOLACKI^a

^aInstitute of Physics, Polish Academy of Sciences Al. Lotników 32/46, 02–668 Warszawa, Poland ^bDepartment of Physics, University of Maryland College Park, MD 20742, USA

The magnetization and magnetic susceptibility of Bridgman-grown $Sn_{1-x}Gd_xTe$ with values of x up to 0.09 have been measured over a temperature range from 2 to 300 K and in magnetic fields up to 5.5 T. The magnetic susceptibility data followed the Curie-Weiss relation with a small Curie temperature that indicated a weak antiferromagnetic coupling among Gd ions. The magnetic field dependence of the magnetization was fitted to a modified Brillouin function with parameter values that agreed fairly well with those from Curie-Weiss plots. The value of the exchange parameter was larger than in Pb_{1-x}Gd_xTe. The samples were *p*-type with carrier concentrations up to 1.3×10^{21} cm⁻³. The ferromagnetic or spin-glass phase due to the RKKY interaction was not observed.

PACS numbers: 75.20.Ck, 75.30.Et

1. Introduction

Magnetic properties of rare-earth-doped IV-VI chalcogenides have been studied recently in $Pb_{1-x}Gd_xTe$ and $Pb_{1-x}Eu_xTe$ [1, 2]. Here we are reporting results on $Sn_{1-x}Gd_xTe$. Since the *f*-shell of Gd is more localized and shielded in comparison with the *d*-shells of transition metal ions, one would expect a smaller exchange interaction in rare-earth-doped diluted magnetic semiconductors (DMS). The high carrier concentration might cause a ferromagnetic ordering, as in $Pb_{1-x-y}Sn_yMn_xTe$ [3].

^{*}This work was supported in part by the New Energy and Industrial Technology Development Organization of Japan.

1. Experiment

The samples of $Sn_{1-x}Gd_x$ Te were cut from boules grown by the Bridgman technique. The x_v values determined by electron microprobe analysis and the hole concentrations (both with an accuracy of about 20%, including variation throughout the sample) are given in Table I.

TA	\mathbf{BLE}	Ι
----	----------------	---

Sample	x_v	\overline{x}	T(K)	$\theta(K)$	$\chi_0(\text{emu/g})$	$J/k_{\rm B}({\rm K})$	$p(10^{20} \text{cm}^{-3})$
			fit range				
Α	0.09	0.074	20-300	5.22	-5×10^{-7}	0.56	1.58
В	0.08	0.057	20-300	6.04	-5×10^{-7}	0.84	4.07
С	0.06	0.043	20-300	4.19	-5×10^{-7}	0.77	5.60
D	0.05	0.039	20300	3.46	-5×10^{-7}	0.69	5.60
Е	0.01	0.011	10-125	0.51	-1×10^{-6}	0.36	10.0
F	0.006	0.005	10-125	0.63	-7.7×10^{-7}	0.93	12.6

Susceptibility fitting parameters and carrier concentrations

The magnetization measurements from 0.005 to 5.5 T were carried out at the University of Maryland using a SQUID magnetometer system. In order to determine the susceptibility the measurements were carried out at four fields between 0.005 and 0.05 T, and the susceptibility was determined by a linear least-squares fit.

3. Results and discussion

The susceptibility data have been fitted to the Curie-Weiss law

$$\chi = \frac{P_1}{T+\theta} + \chi_0,\tag{1}$$

where T is the absolute temperature, P_1 is the Curie constant, θ is the Curie temperature, and χ_0 is the diamagnetic susceptibility of the host lattice. P_1 and θ were fitting parameters, χ_0 was assumed -5×10^{-7} emu/g in samples with $p < 10^{21}$ cm⁻³ and was fitted in samples with $p > 10^{21}$ cm⁻³. The effective content of Gd ions, \overline{x} , and the nearest neighbor exchange parameter, J/k_B (k_B is the Boltzmann constant), were determined from P_1 and θ , with estimated errors of about 10% and 20%, respectively, as described in Ref. [2].

The experimental results and fits are shown in Fig. 1. The fitting parameters are given in Table I.

The magnetization as a function of magnetic field is shown in Fig. 2 for a sample with $x_v = 0.05$ (sample D). In all samples the magnetization was fitted to a modified Brillouin function of the form

$$M = Sg\mu_{\rm B}\overline{x}N_0B_S(\zeta) + \chi_0H,\tag{2}$$

where $\zeta = Sg\mu_{\rm B}H/k_{\rm B}(T+T_0)$ and $B_S(\zeta)$ is a Brillouin function. S is the magnetic ion spin, g is the g-factor of magnetic ion, $\mu_{\rm B}$ is the Bohr magneton, and N_0

Fig. 1. Inverse susceptibility vs. temperature for $Sn_{1-x}Gd_xTe$. Solid lines are fits to the Curie-Weiss law (see Table I).

Fig. 2. Magnetization vs. magnetic field for $Sn_{1-x}Gd_xTe$ with $x_v = 0.05$. Solid lines are fits to a modified Brillouin function.

is the number of cation sites per gram. For Gd g = 2 and S = 7/2. \overline{x} and T_0 were fitting parameters. The solid lines in Fig. 2 are given by Eq. (2). The fitting parameter values are given in Table II. The values of θ and T_0 agree fairly well. The temperature dependence of \overline{x} and T_0 is stronger than in Pb_{1-x}Eu_xTe [2].

We see that the exchange interaction is antiferromagnetic. From the susceptibility and magnetization data we obtained the average value $J/k_{\rm B} = 0.7 \pm 0.2$ K. This is smaller than for the Mn-based chalcogenides, as expected in case of rare-earth ions, and larger than for $Pb_{1-x}Gd_xTe$ and $Pb_{1-x}Eu_xTe$, in agreement with the smaller cation-anion spacing in the SnTe-based compounds (see Ref. [4]).

TABLE II

Magnetization fitting parameters							
for $\operatorname{Sn}_{1-x}\operatorname{Gd}_x$ is with $x_v = 0.05$							
$T(\mathbf{K})$	\overline{x}	T_0	$J/k_{\rm B}({ m K})$				
2	0.035	2.08	0.47				
2.5	0.035	2.30	0.51				
3	0.036	2.44	0.54				
3.5	0.036	2.54	0.56				
5	0.037	2.95	0.62				
10	0.040	3.82	0.75				
15	0.037	2.20	0.47				
25	0.040	3.53	0.71				

Acknowledgements

We thank Prof. Y. Nishina, Dr. A. Kasuya, and Dr. G. Kido for helpful discussions, and Mrs. E. Grodzicka for the Hall effect measurements.

References

- M.Górska, J.R. Anderson, Z. Gołacki, Mat. Res. Soc. Symp. Proc. 89, 119 (1987).
- [2] M. Górska, J.R. Anderson, G. Kido, Z. Gołacki, Solid State Commun. 75, 363 (1990).
- [3] T. Story, G. Karczewski, L. Świerkowski, M. Górska, R.R. Gałązka, Semicond. Sci. Technol. 5, S138 (1990).
- [4] M. Górska, J.R. Anderson, Phys. Rev. B 38, 9120 (1988).