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An effective magnon-lattice Hamiltonian for the degenerate Hubbard chain
with electron—phonon interaction is derived and a formalism for the descrip-
tion of solitary magnons is presented.
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1. Introduction

Over the past few years many papers have been published on the one-dimen-
sional systems dealing with the question whether equation of motion for them ad-
mit the existence of soliton solutions (e.g.[1-9]). One of the possible sources of non-
linearity is the electron—phonon coupling. Pushkarov et al. [4] considered a soliton
formation in a ferromagnetic Heisenberg chain caused by the magnon-phonon cou-
pling. The present paper extends the problem into itinerant system. The following
discussion is stimulated by a recent discovering of quasi one-dimensional organic
ferromagnets [10] which are believed to be well described by the one-dimensional
doubly degenerate Hubbard model (DDH) [11]. It is well-known that molecular
crystals are good candidates for the occurence of solitons. The widely discu88ed
Davydov soliton [12] describing the transport of intramolecular energy and elec-
trons along α-helical protein molecules is the best known example.

Molecular crystals are mechanically soft (small elasticity coefficient) and due
to the sensitivity of π-orbital overlap on the local distortion a strong electron-pho-
non coupling is expected.

The aim of the present paper is to give a general schema of looking for
the soliton solution in itinerant ferromagnets and DDH is chosen only because
it is the simplest itinerant model having a ferromagnetic Hartree-Fock ground
state [13, 14]. A complex question of whether these solutions represent stable
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nonlinear excitations of the one-dimensional degenerate Hubbard model coupled
to the lattice will be examined in a subsequent paper [19].

2. Model

We consider the doubly degenerate Hubbard chain coupled to the harmonic
lattice

where ci

λ
σ+

is the electron creation operator at the siteiin the λ orbital (λ = 1, 2)
with spin σ. The parameter t is a hopping integral between nearest-neighbor sites,
and we assume that the two λ orbitals are not mixed by the hopping. The second
term, proportional to U, represents the intraorbital Coulomb repulsion. The third
term, proportional to V, describes the interorbital Coulomb repulsion and the final
term containing J represents the exchange interaction.

In the degenerate model it is possible to have an ordering of the orbital states
besides the magnetic order [14-18]. From now on, we will consider the average
electron density per site n not much different from unity, what corresponds to
the occupation in the earlier mentioned ferromagnetic organic systems [10, 11]. In
the strong coupling limit at T = 0 the ground state for n ≠ 1 is ferromagnetic
with simultaneous orbital order of "antiferromagnetic" type [14, 15]. For n 1
ferromagnetic ordering with no orbital order is also possible (high values of J are
not favourable to an orbital superlattice [19]). The lattice part of the Hamiltonian
HL is described in the harmonic approximation by:

where m is the mass of the molecule in the chain, ui is the molecule displacement
from the equilibrium position and ui is the sound velocity. The lattice constant is
chosen as unity.

The interaction between the electron subsystem and the lattice, in the linear
approximation with respect to small deviations ui reads

In general the above coupling can influence both the ground state and the excita-
tion spectrum. In the preliminary discussion presented here we neglect the former,
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assuming that the strength of the electron-lattice coupling compared with the
correlation and exchange energies is still not large enough to introduce a static
distortion. The problem of magnons and solitons in the distorted lattice will be
published elsewhere [19].

3. Magnons

In this Section we define the magnon operators for the two ground states,
ferromagnetic without orbital order |F),

and ferromagnetic with orbital order of "antiferromagnetic" type WO). For the
latter case it is more convenient to introduce the double labeling of the sites
distinguishing between the sublattices (l,1) if i = 21 and (l,2) if i = 21 + 1. The
electron site occupations for this state are:

3.1. Magnons for the ground state |F)

A general form of the magnon creation operator is

where v labels the magnon branches:

N is the number of lattice sites. For low temperatures only acoustic branch is
relevant. In RPA one gets the acoustic magnon amplitude in a form:
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Eq is the magnon energy calculated from RPA equation of motion:

and the normalization factor dq is

In the following we will use the Fourier transforms of the magnon operators:

3.2 Magnons for the ||F0) ground state

Before defining the magnon operator let us first write electron band energies
for —F0) given in the Hartree-Fock approximation:

where t = 1, 2 labels the bands:

Upstrokes used anywhere in the text have always the meaning explained above.
The Brillouin zone is half as large as the original. The orbital degeneracy

(energy does not depend on λ) is a consequence of the neglection of interorbital
hopping (2). The transformation diagonalizing the Hartree-Fock approximation of
Hamiltonian (2) reads

ω = 1, 2 labels sublattices and
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with

Matrix S2ww1 has u and υ reversed. The acoustic magnon operator for the considered
case takes the form:

The RPA equation of motion for β+q is equivalent to the following set of
equations for the magnon amplitudes:

where

where

Using (17) one can express (22) explictly

where EF is a Fermi level and θ is a step function. It is easy to check that the
magnon amplitudes satisfy the following, intuitively clear symmetry relations:
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From (19) using (24) one gets the equation (25) determining the acoustic magnon
energy spectum:

where

with

where

The magnon amplitudes corresponding to the solution of equation (25) are

where Dq is a normalization factor and

and for ω ≠ w1

The amplitudes for λ = 2 are given by (24). Later we shall need the Fourier
transforms of magnon operators:

where

To make the definition (32) unambigous let us allow j to run over the sites of
sublattice 1, i.e. j = (j, 1).
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4. Magnon—lattice coupling

A very useful tool to study magnon-magnon or magnon-phonon interac-
tions is the effective magnon Hamiltonian [20] being in analogy to the well-known
Holstein—Primakoff boson representation of the Heisenberg Hamiltonian [21], an
expansion of the Hubbard Hamiltonian in terms of magnon operators β+q, βq1 . Up
to terms of fourth order Heff reads

where

As it is easy to check, an analogous expression to (35) but with He replaced by
He-L vanishes.

Contrary to the 3D systems the magnon interaction term for the linear chain
can not be neglected even at low temperatures. The reason is that the magnon
bound states, as was shown by Bethe [22], exist for all wavevection and thus some
of them have arbitrary small energy. The itinerant picture discussion of nonlin-
ear effects resulting from magnon-magnon interactions is under consideration and
will be published elsewhere [19]. Here we concentrate only on the nonlinearef-
fects having as a source a coupling of magnetization and lattice fluctuations. The
magnon-lattice coupling does not mix the states with different magnon occupa-
tions and therefore in a first approximation one can discuss the coupling of magnon
with the lattice indepedently from the interaction of magnon bound states with
the lattice. In the following we consider only the former problem. We use the free
magnon representation since at low temperatures magnons are not strongly influ-
enced by the occurence of magnon bound states due to the small occupation of all
possible excitations. Chosing as the ground state |0) = |F) and restricting to the
one-magnon subspace one can rewrite Heff in the more convenient for the present
purposes site representation as follows:

where
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A similar effective Hamiltonian for |0) = |F0) has the form:

5. Solitary magnons

The following derivation of the nonlinear Schrödinger equation describing the
long wavelength dynamics of the considered system is only a simple generalization
of the derivation given by Davydov [1] for molecular systems and adapted by
Pushkarov [4] for Heisenberg model. The differences which the reader will see
in some intermediate steps are a consequence of the different space extension of
the "magnon hopping term" (A(∆)β+jβj+∆)  and magnon lattice coupling. In the
present considerations they extend beyond the nearest neighbors.

5.1. Solitons for the ferromagnetic ground state |F)

Using (40) one can rewrite the effective Hamiltonian (36) extended by a
lattice part as follows:

We look for the solution of the Schrödinger equation

in the form:
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with the normalization condition:

The set of equations for the amplitudes C5 corresponding to (44) takes the form:

To discuss the lattice dynamics the elastic terms should be extended by the
magnon—lattice coupling contribution. Following [1] we constuct the functional
F(t) = (Ψ(t)|H|Ψ (t)) playing the role of the Hamilton function in terms of uj and
muj with C.j fixed. From the Hamilton equations:

follows

We are interested in the case when the deformation region is much larger than the
lattice constant. We can consider uj and Cj as smooth functions of the position,
and going over to a continuum approximation:

where

where

B1 = HL , 	 (54a)
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We attempt to find the stationary profile solutions:

It is easy to check that the lattice energy B1 does not depend on time

The substitution of (55) into (51) gives

Putting now (57) into (53) one gets the well-known nonlinear Schrödinger equation
for the magnetization amplitude C:

where

The one-soliton solution to (58) normalized to unity is given by:

where

The variable ζ0 appears as a result of the translational invariance of the prob-
lem and can be determined by the initial conditions. It should be noted that (60)
describes properly only slow moving solitons (υ < υ0). In the υ —> υ o limit anhar-
monic effects in the lattice oscillations must be allowed for (for detail see [8]). The
low velocity soliton is the more localized the larger the electron-phonon coupling
is and the smaller are the elasticity and spin wave stiffness constants. It is easy
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to see that for a vanishing electron—lattice coupling ( Ґ→ 0) (60) takes the plane
wave form.

The soliton-like magnetization deviation (60) is accompanied by the lattice
distortion:

5.2. Solitons for IF0) ground stαte

The general form of magnon-lattice coupling for the two sublattice case
(43) is far more complicated than the one discussed above. Fortunately we are
interested here as in the whole paper only in the low energy excitations extending
over many lattice sites. In this case it is justified to restrict a discussion to the
coupling of magnons with the long wavelength acoustic lattice modes only. Having
this in mind one can introduce a reasonable simplifying approximation:

which transforms the coupling term (43) into the form discussed in the previous
Section:

where

In this way the present problem is mapped into the one previously discussed. The
one-soliton solution has a form (60) with the coupling constants defined by (65)
and ∆  running over 0, ±2,...

Summarizing, the present paper gives a formal background for a discussion
of solitary bound states of magnons and lattice deformations in the itinerant ferro-
magnets. In a subsequent paper [19] we will discuss the soliton like magnon bound
states and their interaction with the lattice.
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