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The present symmetry theory of optical phenomena makes it possible to de!
termine each of 122 point symmetry groups both for non-dispersive as well
as dispersive media. This is achieved by considering the symmetry breaking
effect external fields (separately E and H) on the propagation of electro-
magnetic waves. The corresponding results are collected in Tables I-III. The
way of measuring the relevant physical quantities is proposed. The point
symmetry of a given sample is obtained by comparing the experimental re-
sults with their theoretical counterparts. The results given in Tables I-III
can also be viewed as the discussion of the "canonical" solutions (effects) for
a given symmetry K.

PACS numbers: 61.16.—d, 78.20.Bh, 78.20.Jq, 78.20.Ls

1. Introduction

The aim of this paper is to formulate the theoretical basis to elaborate the
optical method of determining the point symmetry groups both for magnetic and
non-magnetic crystals, i.e. of 122 point groups [1]. The basis is here the charac-
teristic ("canonical") solutions of propagation equation for plane electromagnetic
wave in homogenous media [2]:

.E stands for the electric field of the wave, n is a refractive index,
k

 — a damp-
ing coefficient of the wave, k — a wave vector, and finally εji is the dielectric
permittivity tensor with the complex elements.

The solution to this equation for a given s depends on:

(61)
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— the form of the tensor εji. The latter is fixed by the symmetry groupKof the
medium or by the broken symmetry group K(F) [3], if the medium is placed
in external field F;

— the relation between the elements of ε-tensor.

The solutions for the different media with the same symmetry groups K
(then also K(F)) can take different forms. For example: for the same form o
f εji we might obtain the elliptically or linearly polarized E1 and E2 waves if,
respectively, ε11 — ε22 « ε12 « ε'12 or ε11 — ε22 «  ε'12« ε' 12 hold. The question
concerning the elliptical or linear character of the polarization as well as the similar
problems related to Eqs. (3) and (4) of the next Section can be easily answered by
taking into account the results obtained for all directions of the fields and wave
vectors. However, due to the qualitative character of the results obtained in this
way they do not provide a firm basis for solving the inverse problem: to determine
the symmetry K from the optical measurements.

In the sequel we shall make use of the solutions which either determine un-
ambiguously the symmetry of εji or unambiguously exclude some possibilities, for
example -- the circularly polarized waves. The classical example of such solutions
are the solutions for the non-magnetic crystals (32 crystallographic classes). They
allowed to classify the non-magnetic crystals as the socalled biaxial, uniaxial and
isotropic ones [4, 5].

If we apply Eq. (1) to the case of magnetic crystals (i.e. we take the form
of ε's suitable for this case) we obtain new solutions. However, the number of
symmetries to identify is now 90 + 32 = 122. The way out of this situation is to
supply ourselves with the sufficient number of the different forms of the tensor
eij; this can be achieved by breaking initial symmetry with the help of external
field. The relevant results for  εij were given in Tables II and III in the paper [3].
Therefore, it remains to analyse the solutions of Eq. (1) which correspond to the
above tensors and to determine the symmetry group using, in turn, table I of Ref.
[3]. This is accomplished in the present paper, see Tables

The proposed method is very flexible; by adjusting properly the external field
we can achieve the optimal conditions. Moreover, it allows to fix experimentally
the functional field dependence of the roots of Eq. (1) as well as to fix the number
and the arrangement of the directions equivalent to the given direction of the field.
These directions, in turn, are arranged in such a way that they are permuted under
the action of the group K. We say they constitute the star of field F in group K.
Applying succesively the same field F parallelly to the rays of the star we obtain
exactly the same effects described by the same parameters.

The corresponding results are presented in Tables I-III. The following nota-
tion is used in these tables: F = 0 denotes non-dispersive crystal without external
field, F = k — a dispersive crystal, while F = E, H — any crystal in the external
electric or magnetic fleld, respectively. Other symbols are explained in Sec. 2. In
Sec. 3 some suggestions are given concerning the measurement of the "canonical"
properties of the crystal.



The Optical Method of Determining the Point Symmetries 	 63

2. The propagation equation and the symmetry of its solutions

It follows from Eq. (1) that (if det(

 εij

) ≠ 0) the electric fields Ei and E2
of electromagnetic waves are oriented with respect to the vector s in such a way,
that we have:

(a) two skew waves,

(b) a skew and transverse wave, or

(c) two transverse waves [6].

In the case (c), for some forms of the tensorsεij  the classification can be made
more detailed to include the linearly, L, and circilarly, C, polarized waves; we use
the symbols: cL, cC, c. The latter symbol denotes the waves for which the circular
polarization is forbidden.

Equation (1) is invariant under the operation of the inversion of the direction
field, F →F,if the tensor εij determined by the K(F) groups and is not invariant
if it is determined by the J(F) groups [2, 3]. As a consequence the roots of Eq. (1)
must satisfy, in the case of K(F) groups, the following relation:

while in the case of J(F) groups neither (3) nor (4) can hold, i.e.

Therefore, the information concerning the type of the wave may be supplied with
the additionalinformation,relatedtoEqs.(3)—(5). For example, we can use the sym-
bols: c3, c4, c5, b3, b5, a3, a5, c, b, a, while if there is no additional number it
means that Eq. (5) cannot be obeyed and we cannot decide which one of Eqs.(3)
and (4) holds.

In some cases of linearly polarized waves, the conditions (3) and (4) for the
birefringence give

An = 0, 	 (6)

while in some cases of elliptically and circularly polarized waves they give for the
angle of rotation of polarization plane

The rotations described by Eqs. (7) and (8) will be called the non-reciprocal and
reciprocal rotation, respectively.
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The condition (5) does not exclude, for some linearly polarized waves, the
relation

Δn = 0 	 (9)

identical, from mathematical point of view with the formula (6); however, they are
different as far as the measurement is concerned. The formulae (7) and (8) do not
have counterparts for the elliptically and circularly polarized waves, because here

As a consequence, for the groups J(F) the pure non-reciprocal and reciprocal
rotation do not exist.

Summerizing, we have the new symbols: cC5, cL6, cC7, cC8 and cL9.
When F = 0 the symbols a, b, c, cL, cC are sufficient to describe the so-

lutions of Eq. (1). Additional informations concerning Δn(M) and φ(M) (M is
the magnetization vector of the magnetic domain of the symmetry K) are trivial;
therefore, they are neglected in Tables The solutions of type cC (and sim-
ilarly for the elliptically polarized waves) describe the Faraday effect generated
by the (structural) vector M of crystal. This effect is known as the extraordinary
Faraday effect. We propose the name: the stuctural Faraday effect. To motivate
this, let us take into account the following facts: the solutions of Eq. (1) for the
stuctures with the symmetry K = 3m', i.e. M ≠0, are of the type cC, while for
the structures with the symmetry K = 3m1', i.e. M = 0, they are of the type cL
(see: Table II).

To summarize, if F ≠ 0 we obtain the same solutions of Eq. (1) for each ray
of F-star. Finally, the full symbols of solutions look like below:

(i) a3,6 denotes two skew waves for which n21 (F) and n22(F) satisfy the rela-
tion (3) and F-star has 6 rays;

(ii) a,4 denotes two skew waves; the relation (3) or (4) (but not (5)) holds
and the F-star has 4 rays;

(iii) cC7,2 denotes the non-reciprocal rotation of circularly polarized trans-
verse waves; F-star has 2 rays; and so on.

3. The tables and measurements

Table I concerns the biaxial crystals, Table II — uniaxial crystals and Table
III — isotropic (cubic) crystals. If a sample appears to be magnetized (M ≠0)
solutions should be looked for under No 1-12 (Table I) and 29-47 (Table H);
otherwise (M = 0) — under No 13-28 (Table I) and 48-106 (Table II).

For definiteness from now we will consider the case of external electric field
E; the requirements concerning the geometry of both E and H field are exactly
the same.

At the beginning let us suppose that our sample belongs to the uniaxial
crystal (Table II — No 29-47 for M 0, No 48-106 for 

M 

≠0). It is convenient
to perform the first measurement in the geometry s E z and s || E  ||z and s || z, E  ||
-z,for two opposite directions of the fieldE.The direction ofsmust be preserved,
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otherwise it is not possible to recognize whether angle φ(E) satisfies the relation
(7) or the relation (8). In the above geometry the solution of type cC5 can also
be recognized, because, in general, the requirements concerning the geometry for
the groups J(F) are weaker than for the groups K(F). In the case of solutions of
type cL for both above geometries and both type of groups (i.e. J(F) and K(F))
we obtain Δn = 0. In order to distinguish them (i.e. which is of the type cL6
and which of type cL9) the additional measurements (at best — in the geometries
s ┴ z, E || z and  s ┴ z, 

E || 

-z) are needed.
Of course, for a given sample we can obtain only one from eight (namely: c,2;

c4,2; cC5,1; cL4,2; cL6,2; cC7,2; cC8,2; cL9,1) possible results. The above results
are written out for each groups K in the first line in Table H. This line is equipped
with the symbol F || z.

The eight effects for 19 (for M 

 

≠

0

 ) + 59 (for M = 0) groups of the uni-
axial crystals are not sufficient to determine the symmetry of a given sample;
the subsequent measurements are unavoidable. First of all we should perform the
additional measurements for F 1 z because only on this plane there exist more
than one qualitatively different F-stars. In Table II the theoretical results for the
case F ┴ z are listed successively, starting from the second line, in the order of
decreasing symmetry of F-stars; all results are given for the geometry s || F ┴ z.

There exists a continuum of lowest symmetry F-stars, while there are only
one or two stars for any higher symmetry. All stars from the continuum have, of
course, the same symmetry; the solutions corresponding to all of them are of the
same type (a) or sometimes (b) — see Table H, they have the same number of
rays; nevertheless, and this is what is more important, for the same value of the
field F the values for n12(F) and also for n22(F) can be different (more precisely:
not much different, but still different).

The latter property suggests the method of measurement. The ideal would
be the permanent measurement during the slow rotation of the crystal, or at least,
the successive measurements for the crystal rotated by the very small angle around
z-axis until the full 2π angle was achieved. It is better to depict the measured values
of h21 and fie (for the same value of the field F) in the polar coordinates. In this way
we can easily find the number of rays of a given star. The corresponding curves
will be very irregular and closed (if for a given value of the field F there exists no
direction along which the field F causes the phase transition). The irregularities
of the curves are controlled by the rules of symmetry K. To be more precise:
such curves must have the symmetry of twodimensional (the symmetry group
of the plane under consideration) subgroup of K-group. The irregularity comes
from the experimental errors. Such properties are to be expected if we remind
ourselves the corresponding measurements for the socalled "Umkehreffekt" for
transport phenomena ([7], and the literature therein). To summarize, the method
of determining the number of rays in F-star proposed above, seems to be the only
one available.

If to the star from the continuum there correspond the type (a) waves then
to the single star there correspond the type (b) or (c) ones. The problem of dis-
tinguishing between them reduces to the problem of distinguishing between the
transverse and skew waves. It is known [6] that under the same conditions the skew
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wave is more absorbed than transverse one. At the point in which the type (c)
wave (type (b)) transforms into the type (b) one (type (a)) the curve of damping
coefficient к must receive a jump.

By comparing the results of the experiments proposed above with the theo-
retical data (see Table II) one can reduce the ambiguity in determining the sym-
metry group of the crystal to a few possibilities only. Then, the final answer can
be obtained by performing in general one additional experiment with the external
magnetic field.

There are also some cases (e.g. Table II No 51, 52) that the measurements
for F = E, H arbitrarily oriented (a.o.) with respect to the z-axis of the crystals
are needed. In such a case we give in Table I-H (the extra line, denoted by symbol
a.o) the full information about those F-stars. However, in order to recognize such
symmetries one measurement along only one s direction for the geometry

s || 

F
(and, of course, for s

||

 -F) is sufficient.
In order to determine the symmetry of isotropic (cubic) crystal one needs

twice as many measurements; they have to be performed along the edge (and
perpendicular plane) of the cube and along the diagonal (and perpendicular plane)
of it. In Table III it is assumed that the direction of the cube edge is known from
other experiment. This is because it is troublesome to find this directions by optical
methods, in particular in non-dispersive media. This problem will be considered
elsewhere.

There is no problem in the case of biaxial (Table I) crystals. The C2z axis of
crystal (if it exists) is parallel or perpendicular to the bisector of the angle made
by optic axes.

4. Summary

In Tables I-HI the results concerning the "canonical" effects for dispersive
media (F = k) are given. They allow to solve the question whether our medium
is dispersive or not. If it is dispersive — the advantage of the proposed method
is that, by varying the external fields, one can isolate the contributions coming
from the external field as well as those related to the dispersive character of the
medium and, therefore, determine unambiguously (as contrasted with the previous
proposals for dispersive media [8]) the symmetry of the crystal.

The further problem is to translate the theoretical proposition into the ex-
perimental methods. It is most likely that some experimental methods presented
in Ref. [9] (and the literature therein) and Ref. [10] (and the literature therein)
may be adopted to our problem.
The above results can be also considered as:

— the discussion of the cardinal solutions (effects) for a given symmetry K,

— the proposal of looking for the other cardinal solutions for other geometries,
as for example s || z and F ┴ z or s ┴ F ┴ z, and so on, for a given
symmetry K.
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