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We study the problem of a thin film of neutral fermions in the presence of a
magnetic field and scattering on random, uncorrelated irregularities at the
boundaries of the film. An attractive interaction of s-wave type is assumed.
We solve the equation for the energy gap and demonstrate its dependence
on both the field and the scattering strength. The phase diagram is found.
There exists a critical point (7c*, Hc*).For temperatures below Tc* the phase
transition is of the first order and of the second order above it. As expected,
the surface scattering significantly reduces the values of the critical field
and teniperature T. The critical point changes its position with increasing
scattering rate but is not removed from the phase diagram until superfluidity
is destroyed.

PACS numbers: 67.50.Fi

1. Introduction

In this paper we describe the behavior of a thin film of a superfluid Fermi
liquid with s-wave pairing in magnetic field. We consider the film thickness range
pF-1 << d ≤ ξ0 where pF=(3π2n)1/3 is the bulk Fermi momentum, n is the
bulk density and ξ0≈ 15 to 40 nm is the zero temperature coherence length, i.e.
de Broglie length of the Cooper pair. For this thickness range we deal with the
three-dimensional dynamics of unpaired fermions affected by the boundry condi-
tions and the twodimensional behavior of the superfluid component. The field is
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assumed here to be strong, i.e. μBH ~kBTc«μ,where Tcis the critical tem-
perature of the normal-superfluid transition at zero field, μ denotes the chemical
potential, μB is the Bohr magneton and kB is the Boltzmann's constant. We dis-
cuss in detail the phase transitions due to the magnetic field including effects of
restricted geometry. These effects in superconductors were originally studied by
Maki and Tsuneto [1, 2] who found the change of the order of the superconducting
transition resulting from Pauli paramagnetism and its dependence on the concen-
tration of impurities. Also, there appeared a detailed theory of Fermi liquids in
a magnetic field by Jacak and Krzyżanowski [3]. They showed the dependence of
the critical parameters (critical magnetic field H c , critical temperature Tc and
the order of the superfluid phase transition on Fermi liquid interactions between
quasip articles.

The motivation for this work comes from a number of recent experimental
studies of various aspects of superfluidity in confined geometries [4-7]. The effect of
the substrate and its irregularities on properties of superfluid thin films is impor-
tant from both experimental [4-7] and theoretical [8-13] points of view. Our aim
was to investigate the influence of substrate's roughness on the phase transition
in the s-paired superfluid. This system may be adequate to describe the expected
superfluidity of 3 He in mixtures of 3He and 4He [14] (for some concentrations of
3He). The approach presented here may also serve as a guide in doing similar cal-
culations for anisotropic superfluids which are already investigated experimentally
[4-7] in the thickness range of about 100 nm, i.e. a little above the thickness limit
studied here. As far as we know, at present there are no experimental results for
a critical temperature of these 3 He films in magnetic field.

In our analysis we neglect the Fermi liquid interactions between quasipar-
tides and treat the system as a Fermi gas, expecting the interactions with the
substrate to be more significant in the thin film geometry.

2. Formulation of the problem

We use the model of a thin film proposed by Tešanović and Valls [13] which
takes into account the substrate's roughness viaa random Gaussian height function
u(x,y):

The parameter ω describes the absolute magnitude of the irregularities. This de-
scription [13] is equivalent to the well-known Abrikosov and Gorkov [15] method
of studying superconductors with impurities. There is however one difference here.
The interaction with the substrate's irregularities is introduced by suitable bound-
ary conditions [18] for the single-particle fermion wave function Ψ(x, y,d + u(x,y))=
0, and Ψ(x, y, 0) = 0, which affect only the dynamics of the three-dimensional un-
paired fermions. As a consequence of the inequality w « d < ξ0weconsider the
superfluid component as purely twodimensional and do not impose any additional
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constraints on it. This means that the energy of one-particle excitations is renor-
malized as in Eq. (5), whereas the anomalous self-energy A is not directly changed
by the scattering at the boundaries. In other words we treat the particle-particle
interaction differently from the particle-hole interaction, as in the case of the time
reversal symmetry breaking perturbation or a spatial variation of the order pa-
rameter [19]. This situation causes the gapless behavior of the system [12, 19].

The boundary conditions written above lead to the quantization of the en-
ergy levels in the film. The Fermi sphere degenerates into a set of Fermi circles.
Further below we make use of v c , the total number of Fermi circles below the
chemical potential and v0 = [2md 2μ/π2 ] 1 / 2 . vc is the nearest integer less than v0.
Refs. [8, 12, 13] contain a more detailed description of the problem.

In the equations below v = 1, ..., vc denotes one of the vc Fermi circles. We
begin by writing the Abrikosov-Gorkov equations [15] including the Pauli terms:

(the spin indices are suppressed here — they will be used elsewhere if confusion
might arise), completed by two self-consistent equations for the normal ∑ν(iωn)
and anomalous ∆ parts of the self-energy [12]:

where ξp = (p2 /2m) -μ, λν = (1/2m) (vπ/d)2,  ωn is the Matsubara frequency,
the superscript 	 in Eq.(4) denotes the time inversion and S is the surface area
of the film. Gv(iωn , p) and Fv (iωn , p) are the normal and anomalous superfluid
Matsubara-Green functions respectively, ħ = μBH, g0 —the bulk s-wave coupling
parameter. For each Fermi circle v we have a coupled set of equations (3), (4), (5)
and (6). Solving Eqs. (3) and (4) we find
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N0 = (m/π)pFSd is the bulk density of states at the Fermi surface. Equations (10)
and (11) contain all the required information about the superfluid film on a rough
substrate in magnetic field. The gap equation in zero field was found in Ref. [12].

3. The gap equation near the continuous phase transition

Assuming continuous change of the order parameter ∆ we expand the gap
equation (10), or rather its form more convenient for this purpose:



Thin Film of a Superfluid Fermi System ... 51

in powers of A around ∆ = 0;ωn(v) is defined here as: ωn(v) = ωn +Ґ U(iωn ))cos2 θ.
We also assume particle—hole symmetry and that surface imperfections do not spoil
this symmetry (see Appendix A). Thus, for small values of ∆ we obtain

ψ(x) is the digamma function. T c0 is the critical temperature at zero field and in
the limit of ideally smooth boundaries, i.e. w = 0. It is given by

ωC is the energy cut-off parameter. It is easy to show the relation between To and
Tc , the critical temperature of the bulk liquid:

Equation (17) resembles the gap equation in the vicinity of the second order
phase transition for superconductors with impurities [2]. Let us note that when
the film thickness d increases to infinity or when the measure of the irregularities
on the surface w is vanishingly small, then
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and the functions f0 , f1 and f2 reach the same limits as for clean superconductors
in Ref. [1].

The critical field at the phase transition of second order is obtained from Eq.
(17) by setting L∆= 0. Then (17) becomes simplified:

4. The order of the phase transition

We find the free energy from the formula [15]:

In the Landau and Liftshitz theory the change of the order of the phase transition
follows from the change of sign of the function f1 . For f1 > 0 the transition is of
second order, whereas for fi < 0 it is of first order. In the region where the phase
transition is of first order the gap equation has two solutions. Figure 1(a)-(d)
shows the phase diagrams for different values of Ґ'(see Appendix B). ForҐ'=0
the coordinates of the critical point are T c* = 0.561 Tc0andhc* =0.610∆0, where

∆0is the magnitude of the order parameter at zero field (ħ = 0) and in the limit
of smooth boundaries (Ґ' = 0). We investigate the influence of the substrate,s
irregularities on the critical point (TC* , HC*), i.e. we find solution to the equation
fi = 0 for different values of I" (see Eq. (19) and Appendix B). The diffuse
scattering significantly reduces both the critical field and temperature as can be
seen in Figs. 2 and 3. There is a critical value of Ґ', Ґ'c ≈3.4∆0 above which
only the normal fluid can exist. Our numerical solution shows the existence of the
first order phase transition for all values Ґ' ≤ 3.4 ∆0. The critical point is present
on the phase diagram until the superfluidity is destroyed by the surface scattering
(solid lines on Figs. 2 and 3).

Due to the quantization of energy levels, the coordinates Tc* and ħc* of
the critical point are discontinuous functions of the film's thickness. We illus-
trate this in Fig. 4. Here We use the parameter of the absolute surface roughness
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Figure 5 presents the trend of oscillations of the coordinates of the critical point.
Various aspects of size effects without magnetic field were studied previously [8,
12, 13]. Finally, we present the solution of the gap equation. We find the order
parameter as a function of magnetic field, Fig. 6, and temperature, Fig 7.
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5. Conclusions

We have studied the phase transition from the s-paired superflnid to the
normal state in a thin film under the influence of a magnetic field and a surface
scattering. The interaction of the fluid with the substrate modifies the spectrum
of one-particle excitations (Eq. (5)), while the particle—particle correlations are
not directly changed. Although the influence of different perturbations on the
phase transition in superconductors was extensively studied in the past, we will
summarize some of those results and compare them with ours.

Maki and Tsuneto [1] showed that due to the Pauli paramagnetism the or-
der of the phase transition in magnetic field may change from second to first when
temperature decreases. However, in superconductors this behavior is possible only
in a very thin film [2] (d ≈ 10À) due to a strong diamagnetism. When the system
is doped with magnetic impurities the critical point (Tc*, hc*) changes its position
on the phase diagram [1]. There exists a critical concentration of impurities that
makes the phase transition of only-the second order. The scattering on magnetic
impurities breaks the time reversal symmetry. As it was stressed before, we.consider
the model in which the geometrical restrictions impose in Eq. (5), (6) asymmetry
analogous to the broken time reversal symmetry [15, 19]. We found a strong de-
pendence of the order of the phase transition on the scattering rate Ґ'∕∆0, (Fig.
1). Nevertheless our numerical analysis shows the permanent existence of the first
order phase transition, (Figs. 2 and 3). In other words the point (Tc*, hc*) is not
removed from the phase diagram. This behavior of the critical point is similar to
its dependence on the strength of the Fermi liquid interaction [3], when this latter
is taken into account. It was pointed out by Jacak and Krzyżanowski [3] that there
is still a change of the phase transition order when the value of the dimensionless
Landau amplitude Fa0 is in the interval -1 < F0a < 1. This resemblance is not
surprising since the inclusion of scattering on substrate,s irregularities (Eq. (5))
corresponds to the definition of the Fermi interactions between quasi-particles [3,
15]. Our model is suitable for describing neutral s-paired systems. This kind of
superffuidity (if it is realized) in a thin film (d ≤ 40 nm) could provide an op-
portunity to study the influence of spin paramagnetism and interaction with a
substrate on the Phase transition.

In the case of a thin film of fermions with p-pairing interactions, e.g. super-
fluid 3 He, these effects could be observable in a low magnetic field [20], H ≤ 20 G,
and temperature much below the critical temperature Tc [21, 22] due to the strong
orientational influence of the external magnetic field on the order parameter [22,
23].
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Appendix A. Particle—hole symmetry

We use the assumption that the reflections of particles from the surface do
not affect the particle—hole symmetry, i.e. the scattering does not convert the
particle excitations into hole excitations and vice versa. It means that we look for
solutions of the equation:

The second equality is possible due to our assumption of the particle—hole symme-
try. The Andreev reflection [16, 17] which reverses .character of excitations might
modify somewhat the results presented here.

Appendix B

To calculate the critical magnetic field for the continuous transition we
rewrite Eq. (26)

First we assign a value to the parameter of relative surface roughness Ґ'/∆0 then
at a temperature T/Tc0 Eq. (34) is solved for a critical field h/ ∆0. This gives the
lower curve in Fig. 1. To obtain the overheating curve in Fig. 1 we look for the
highest h, at a given temperature, for which there exists a nonzero solution of the
gap equation (16). The following form of (16) is suitable for numerical treatment:

where
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Equation (36) is solved together with a version of (11):

The critical point is found from f1 = 0. For this purpose we rewrite (19) in the
following way:

p1 and p2 are defined in (35). Equation (41) is solved together with Eq. (34).
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